
Analogue Logic

This section is written assuming you've either read the digital
logic section already or have a good understanding of digital
logic.

I'll be introducing some new components and concepts required to
make the circuits that operate analogue logic, not previously
discussed; once we've grasped diodes and OpAmps we'll start
looking at concepts, circuits and some [mostly non-essential]
math.

- As discussed previously, in digital and Boolean logic, the truth
values of variables may only be the integer values 0 or 1.
- Analogue logic, [more commonly called fuzzy logic in the wider
world], is a form of 'many-valued' logic in which the truth value
of variables may be any real number between 0 and 1.

- since we are dealing with electronics this is further confused
because '1' in these cases is the maximum voltage in the circuit,
so rather than working between 0 and 1 we actually are working
with 0 and, for example, +/-12V.
- Fortunately i'm going to keep the math simple by using the
somewhat more vague value of 100% rather than a specific voltage
like +/-12V.

- Analogue logic processing devices allow us to do some very
interesting operations on signals and opens up a wide range of
tuning and refinement that would be impossible, or at least
prohibitively complex, with digital systems.
- Analogue processing is also where you will find some very subtle
effects beyond the boring TRUE / FALSE of digital processing.

ANDs ORs XORs and NOTs

- These are our basic digital processing components, but they also
have analogue processing abilities that are likely to be rather
unexpected:

- The NOT simply passes the signal through, inverting it if
required (as discussed below, diode analogue logic has an
inability to invert negatives)
- The AND gate is effectively a MIN() function - it’s output is
equal to the smallest value input.
- the OR gate is a MAX() function.
- The XOR is a strange case and seems to do something along the
lines of a MAX() function on the analogue inputs, but then
combines this with it’s binary output.

this means that to understand the complete behaviour you have to
keep track of both analogue and digital inputs.

DIODES

- A diode is an electrical device allowing current to move through
it in one direction with far greater ease than in the other.
- The most common kind of diode in modern circuit design is the
semiconductor diode, although other diode technologies exist.
- Semiconductor diodes are symbolized in schematic diagrams as
shown below.
- The term “diode” is customarily reserved for small signal
devices, I ≤ 1A

Analogue Diode Logic

- Although these are simple as basic digital concepts, and true
analogue versions of these concepts will be discussed, let's
discuss briefly the slightly odd cases of some forms of NOT, AND
and OR;
- When considering diode logic there are situations where it can
be more than just digital 1 or 0, low or high but not a full true
analogue:

- A diode NOT simply passes the signal through, inverted, but,
since an inverted postitive will not pass through a reverse biased
diode as far as logic is concerned, in diode logic only negatives
can be inverted by a NOT gate, but those signals are full
analogue.

- The diode AND gate is a MIN() function - it’s output is equal to
the smallest value input, not multiplication as with true
analogue.
- So, for example, for signals of 1.2V, 6.7V and 4.3V, the output
would be 1.2V. this does however allow negative values through and
also is true analogue in a sense since it allows constant moving
voltages of any value up to the limits of the electronics.

- Likewise the diode OR gate is a MAX() function not an addition
like true analogue, so the output value from the same three

signals would be 6.7V, again passing -ve values and continuous
moving voltages in true analogue fashion is possible.

the above AND and OR for diode logic work as pure digital logic in
a true sense unlike the NOT.

- Conversely, the diode XOR gate is even more odd and seems to do
something along the lines of a MAX() function on the analogue
inputs, but also sharing properties of a digital gate. That is, to
understand the complete behaviour you have to keep track of both
analogue and digital inputs, which means that you can, in most
situations use a diode XOR as a true analogue XOR and perform
addition modulo2 like any other ring mod or polarised VCA etc.

- Most of the math in this document is based around diode logic
circuitry so uses 100% of rail voltage as a reference maximum
– e.g. in a eurorack modular system the math would be based on
maximums of +/-12V.
- In fact I have generally ommitted the '%' symbol so when
referring to 100 maximums you can read those calculations as +/-
12V in place of the 100 in reality.

- Since a logical NOT gate mathematically can be said to perform:

1 – x

which is the same as

100% - x

for the most part, an inverted signal will be 100 – x, where x is
the normal, uninverted value.

- This of course makes no sense with negative values of x, as the
result would be greater than 100%.
- what actually happens with diode analogue logic is all analogue
values only act as magnitude, before inversion, so:

 x | inverted x

 0 | 100
 100 | 0
 35 | 65
 -35 | 65
 -70 | 30
 etc.

[this will be explained in ore detail later on and specific cases
where it doesn't hold true will mention this as and when
necessary]

OPERATIONAL AMPLIFIERS

This section might seem a little heavier than most others as far
as the science and math goes but it proves very useful in module
design to understand these things well – it's not so essential as
far as patching goes, even complex patch programming, so you could
easily just read the summing up sections or maybe even skip it
completely.

- The operational amplifier is arguably the most useful single
device in analog electronic circuitry.
- With only a handful of external components, it can be made to
perform a wide variety of analog signal processing tasks.
- It is also quite affordable, most general-purpose amplifiers
selling for under a dollar apiece.
- Modern designs have been engineered with durability in mind as
well: many "op-amps" are manufactured that can sustain direct
short-circuits on their outputs without damage.

- One key to the usefulness of these little circuits is in the
engineering principle of feedback, particularly negative feedback,
which constitutes the foundation of almost all automatic control
processes.

Single-ended and differential amplifiers

- For ease of drawing complex circuit diagrams, electronic
amplifiers are often symbolized by a simple triangle shape, where
the internal components are not individually represented.
- This symbology is very handy for cases where an amplifier's
construction is irrelevant to the greater function of the overall
circuit, and it is worthy of familiarization:

- The +V and -V connections denote the positive and negative sides
of the DC power supply, respectively.

- The input and output voltage connections are shown as single
conductors, because it is assumed that all signal voltages are
referenced to a common connection in the circuit called ground.
- Often (but not always!), one pole of the DC power supply, either
positive or negative, is that ground reference point.
- A practical amplifier circuit (showing the input voltage source,
load resistance, and power supply) might look like this:

- Without having to analyze the actual transistor design of the
amplifier, you can readily discern the whole circuit's function:
to take an input signal (Vin), amplify it, and drive a load

resistance (Rload).

- To complete the above schematic, it would be good to specify the
gains of that amplifier (AV, AI, AP) and the Q (bias) point for any

needed mathematical analysis.

- If it is necessary for an amplifier to be able to output true AC
voltage (reversing polarity) to the load, a split DC power supply
may be used, whereby the ground point is electrically "centered"
between +V and -V.
- Sometimes the split power supply configuration is referred to as
a dual power supply.

- The amplifier is still being supplied with 30 volts overall, but
with the split voltage DC power supply, the output voltage across
the load resistor can now swing from a theoretical maximum of +15
volts to -15 volts, instead of +30 volts to 0 volts.
- This is an easy way to get true alternating current (AC) output
from an amplifier without resorting to capacitive or inductive
(transformer) coupling on the output.

- The peak-to-peak amplitude of this amplifier's output between
cutoff and saturation remains unchanged.

- By signifying a transistor amplifier within a larger circuit
with a triangle symbol, we ease the task of studying and analyzing
more complex amplifiers and circuits.
- One of these more complex amplifier types that we'll be studying
is called the differential amplifier.
- Unlike normal amplifiers, which amplify a single input signal
(often called single-ended amplifiers), differential amplifiers
amplify the voltage difference between two input signals.
- Using the simplified triangle amplifier symbol, a differential
amplifier looks like this:

- The two input leads can be seen on the left-hand side of the
triangular amplifier symbol, the output lead on the right-hand
side, and the +V and -V power supply leads on top and bottom.
- As with the other example, all voltages are referenced to the
circuit's ground point.
- Notice that one input lead is marked with a (-) and the other is
marked with a (+).
- Because a differential amplifier amplifies the difference in
voltage between the two inputs, each input influences the output
voltage in opposite ways.
- Consider the following table of input/output voltages for a
differential amplifier with a voltage gain of 4:

- An increasingly positive voltage on the (+) input tends to drive
the output voltage more positive, and an increasingly positive
voltage on the (-) input tends to drive the output voltage more
negative.

- Likewise, an increasingly negative voltage on the (+) input
tends to drive the output negative as well, and an increasingly
negative voltage on the (-) input does just the opposite.
- Because of this relationship between inputs and polarities, the
(-) input is commonly referred to as the inverting input and the
(+) as the noninverting input.
- It may be helpful to think of a differential amplifier as a
variable voltage source controlled by a sensitive voltmeter, as
such:

- Bear in mind that the above illustration is only a model to aid
in understanding the behavior of a differential amplifier.
- It is not a realistic schematic of its actual design.
- The "G" symbol represents a galvanometer, a sensitive voltmeter
movement.
- The potentiometer connected between +V and -V provides a
variable voltage at the output pin (with reference to one side of
the DC power supply), that variable voltage set by the reading of
the galvanometer.
- It must be understood that any load powered by the output of a
differential amplifier gets its current from the DC power source
(battery), not the input signal.
- The input signal (to the galvanometer) merely controls the
output.

- This concept may at first be confusing to students new to
amplifiers.
- With all these polarities and polarity markings (- and +)
around, its easy to get confused and not know what the output of a
differential amplifier will be.
- To address this potential confusion, here's a simple rule to
remember:

- When the polarity of the differential voltage matches the
markings for inverting and noninverting inputs, the output will be
positive.
- When the polarity of the differential voltage clashes with the
input markings, the output will be negative.
- This bears some similarity to the mathematical sign displayed by
digital voltmeters based on input voltage polarity.
- The red test lead of the voltmeter (often called the "positive"
lead because of the color red's popular association with the
positive side of a power supply in electronic wiring) is more
positive than the black, the meter will display a positive voltage
figure, and vice versa:

- Just as a voltmeter will only display the voltage between its
two test leads, an ideal differential amplifier only amplifies the
potential difference between its two input connections, not the
voltage between any one of those connections and ground.
- The output polarity of a differential amplifier, just like the
signed indication of a digital voltmeter, depends on the relative
polarities of the differential voltage between the two input
connections.

- If the input voltages to this amplifier represented mathematical
quantities (as is the case within analog computer circuitry), or
physical process measurements (as is the case within analog
electronic instrumentation circuitry), you can see how a device
such as a differential amplifier could be very useful.

- We could use it to compare two quantities to see which is
greater (by the polarity of the output voltage), or perhaps we
could compare the difference between two quantities (such as the
level of liquid in two tanks) and flag an alarm (based on the
absolute value of the amplifier output) if the difference became
too great.
- In basic automatic control circuitry, the quantity being
controlled (called the process variable) is compared with a target
value (called the setpoint), and decisions are made as to how to
act based on the discrepancy between these two values.
- The first step in electronically controlling such a scheme is to
amplify the difference between the process variable and the
setpoint with a differential amplifier.
- In simple controller designs, the output of this differential
amplifier can be directly utilized to drive the final control
element (such as a valve) and keep the process reasonably close to
setpoint.

To Sum Up:
- A "shorthand" symbol for an electronic amplifier is a triangle,
the wide end signifying the input side and the narrow end
signifying the output. Power supply lines are often omitted in the
drawing for simplicity.

- To facilitate true AC output from an amplifier, we can use what
is called a split or dual power supply, with two DC voltage
sources connected in series with the middle point grounded, giving
a positive voltage to ground (+V) and a negative voltage to ground
(-V). Split power supplies like this are frequently used in
differential amplifier circuits.

- Most amplifiers have one input and one output. Differential
amplifiers have two inputs and one output, the output signal being
proportional to the difference in signals between the two inputs.

- The voltage output of a differential amplifier is determined by
the following equation: Vout = AV(Vnoninv - Vinv)

The "operational" amplifier

- Long before the advent of digital electronic technology,
computers were built to electronically perform calculations by
employing voltages and currents to represent numerical quantities.
- This was especially useful for the simulation of physical
processes.
- A variable voltage, for instance, might represent velocity or
force in a physical system.
- Through the use of resistive voltage dividers and voltage
amplifiers, the mathematical operations of division and
multiplication could be easily performed on these signals.

- The reactive properties of capacitors and inductors lend
themselves well to the simulation of variables related by calculus
functions.
- Remember how the current through a capacitor was a function of
the voltage's rate of change, and how that rate of change was
designated in calculus as the derivative? Well, if voltage across
a capacitor were made to represent the velocity of an object, the
current through the capacitor would represent the force required
to accelerate or decelerate that object, the capacitor's
capacitance representing the object's mass:

- This analog electronic computation of the calculus derivative
function is technically known as differentiation, and it is a
natural function of a capacitor's current in relation to the
voltage applied across it.
- Note that this circuit requires no "programming" to perform this
relatively advanced mathematical function as a digital computer
would.

aside: some might enjoy knowing you can build an opamp
differentiator and here's the math for it;

The voltage output for the operational amplifier differentiator
can be determined from the relationship below:

Vout =−R C dVin/dt
Where:
 Vout = output voltage from op amp differentiator
 Vin = input voltage
 t = time in seconds
 R = resistor value in the differentiator in Ω
 C = capacitance of differentiator capacitor in Farads
 dVin/dt = rate of change of voltage with time.

- Electronic circuits are very easy and inexpensive to create
compared to complex physical systems, so this kind of analog
electronic simulation was widely used in the research and
development of mechanical systems.
- For realistic simulation, though, amplifier circuits of high
accuracy and easy configurability were needed in these early
computers.

- It was found in the course of analog computer design that
differential amplifiers with extremely high voltage gains met
these requirements of accuracy and configurability better than
single-ended amplifiers with custom-designed gains.
- Using simple components connected to the inputs and output of
the high-gain differential amplifier, virtually any gain and any
function could be obtained from the circuit, overall, without
adjusting or modifying the internal circuitry of the amplifier
itself.
- These high-gain differential amplifiers came to be known as
operational amplifiers, or op-amps, because of their application
in analog computers' mathematical operations.

- Modern op-amps, like the popular model 741, are high-
performance, inexpensive integrated circuits.
- Their input impedances are quite high, the inputs drawing
currents in the range of half a microamp (maximum) for the 741,
and far less for op-amps utilizing field-effect input transistors.
- Output impedance is typically quite low, about 75 Ω for the
model 741, and many models have built-in output short circuit
protection, meaning that their outputs can be directly shorted to
ground without causing harm to the internal circuitry. With direct
coupling between op-amps' internal transistor stages, they can
amplify DC signals just as well as AC (up to certain maximum
voltage-risetime limits).
- It would cost far more in money and time to design a comparable
discrete-transistor amplifier circuit to match that kind of
performance, unless high power capability was required. For these
reasons, op-amps have all but obsoleted discrete-transistor signal
amplifiers in many applications.

- The following diagram shows the pin connections for single op-
amps (741 included) when housed in an 8-pin DIP (Dual Inline
Package) integrated circuit:

- Some models of op-amp come two to a package, including the
popular models TL082 and 1458.
- These are called "dual" units, and are typically housed in an 8-
pin DIP package as well, with the following pin connections:

- Operational amplifiers are also available four to a package,
usually in 14-pin DIP arrangements.
- Unfortunately, pin assignments aren't as standard for these
"quad" op-amps as they are for the "dual" or single units.
- Consult the manufacturer datasheet(s) for details.

- Practical operational amplifier voltage gains are in the range
of 200,000 or more, which makes them almost useless as an analog
differential amplifier by themselves.

- For an op-amp with a voltage gain (AV) of 200,000 and a maximum

output voltage swing of +15V/-15V, all it would take is a
differential input voltage of 75 µV (microvolts) to drive it to
saturation or cutoff!
- Before we take a look at how external components are used to
bring the gain down to a reasonable level, let's investigate
applications for the "bare" op-amp by itself.

- One application is called the comparator.
- For all practical purposes, we can say that the output of an op-
amp will be saturated fully positive if the (+) input is more
positive than the (-) input, and saturated fully negative if the
(+) input is less positive than the (-) input.
- In other words, an op-amp's extremely high voltage gain makes it
useful as a device to compare two voltages and change output
voltage states when one input exceeds the other in magnitude.

- In the above circuit, we have an op-amp connected as a
comparator, comparing the input voltage with a reference voltage
set by the potentiometer (R1).

- If Vin drops below the voltage set by R1, the op-amp's output

will saturate to +V, thereby lighting up the LED. Otherwise, if Vin
is above the reference voltage, the LED will remain off.
- If Vin is a voltage signal produced by a measuring instrument,

this comparator circuit could function as a "low" alarm, with the
trip-point set by R1.

- Instead of an LED, the op-amp output could drive a relay, a
transistor, an SCR, or any other device capable of switching power
to a load such as a solenoid valve, to take action in the event of
a low alarm.

- Another application for the comparator circuit shown is a
square-wave converter.
- Suppose that the input voltage applied to the inverting (-)
input was an AC sine wave rather than a stable DC voltage. In that
case, the output voltage would transition between opposing states
of saturation whenever the input voltage was equal to the
reference voltage produced by the potentiometer.
- The result would be a square wave:

- Adjustments to the potentiometer setting would change the
reference voltage applied to the noninverting (+) input, which
would change the points at which the sine wave would cross,
changing the on/off times, or duty cycle of the square wave:

- It should be evident that the AC input voltage would not have to
be a sine wave in particular for this circuit to perform the same
function.
- The input voltage could be a triangle wave, sawtooth wave, or
any other sort of wave that ramped smoothly from positive to
negative to positive again.
- This sort of comparator circuit is very useful for creating
square waves of varying duty cycle.
- This technique is sometimes referred to as pulse-width
modulation, or PWM (varying, or modulating a waveform according to
a controlling signal, in this case the signal produced by the
potentiometer).
- Another comparator application is that of the bargraph driver.

- If we had several op-amps connected as comparators, each with
its own reference voltage connected to the inverting input, but
each one monitoring the same voltage signal on their noninverting
inputs, we could build a bargraph-style meter such as what is
commonly seen on the face of stereo tuners and graphic equalizers.
- As the signal voltage (representing radio signal strength or
audio sound level) increased, each comparator would "turn on" in
sequence and send power to its respective LED.
- With each comparator switching "on" at a different level of
audio sound, the number of LED's illuminated would indicate how
strong the signal was.

- In the circuit shown above, LED1 would be the first to light up

as the input voltage increased in a positive direction.
- As the input voltage continued to increase, the other LED's
would illuminate in succession, until all were lit.
- This very same technology is used in some analog-to-digital
signal converters, namely the flash converter, to translate an
analog signal quantity into a series of on/off voltages
representing a digital number.

To Sum Up:
- A triangle shape is the generic symbol for an amplifier circuit,
the wide end signifying the input and the narrow end signifying
the output.

- Unless otherwise specified, all voltages in amplifier circuits
are referenced to a common ground point, usually connected to one

terminal of the power supply. This way, we can speak of a certain
amount of voltage being "on" a single wire, while realizing that
voltage is always measured between two points.

- A differential amplifier is one amplifying the voltage
difference between two signal inputs. In such a circuit, one input
tends to drive the output voltage to the same polarity of the
input signal, while the other input does just the opposite.
Consequently, the first input is called the noninverting (+) input
and the second is called the inverting (-) input.

- An operational amplifier (or op-amp for short) is a differential
amplifier with an extremely high voltage gain (AV = 200,000 or

more). Its name hails from its original use in analog computer
circuitry (performing mathematical operations).

- Op-amps typically have very high input impedances and fairly low
output impedances.

- Sometimes op-amps are used as signal comparators, operating in
full cutoff or saturation mode depending on which input (inverting
or noninverting) has the greatest voltage. Comparators are useful
in detecting "greater-than" signal conditions (comparing one to
the other).

- One comparator application is called the pulse-width modulator,
and is made by comparing a sine-wave AC signal against a DC
reference voltage. As the DC reference voltage is adjusted, the
square-wave output of the comparator changes its duty cycle
(positive versus negative times). Thus, the DC reference voltage
controls, or modulates the pulse width of the output voltage.

Negative feedback

- If we connect the output of an op-amp to its inverting input and
apply a voltage signal to the noninverting input, we find that the
output voltage of the op-amp closely follows that input voltage
(I've neglected to draw in the power supply, +V/-V wires, and
ground symbol for simplicity):

- As Vin increases, Vout will increase in accordance with the

differential gain.

- However, as Vout increases, that output voltage is fed back to

the inverting input, thereby acting to decrease the voltage
differential between inputs, which acts to bring the output down.
What will happen for any given voltage input is that the op-amp
will output a voltage very nearly equal to Vin, but just low enough

so that there's enough voltage difference left between Vin and the

(-) input to be amplified to generate the output voltage.

- The circuit will quickly reach a point of stability (known as
equilibrium in physics), where the output voltage is just the
right amount to maintain the right amount of differential, which
in turn produces the right amount of output voltage.
- Taking the op-amp's output voltage and coupling it to the
inverting input is a technique known as negative feedback, and it
is the key to having a self-stabilizing system (this is true not
only of op-amps, but of any dynamic system in general).
- This stability gives the op-amp the capacity to work in its
linear (active) mode, as opposed to merely being saturated fully
"on" or "off" as it was when used as a comparator, with no
feedback at all.

- Because the op-amp's gain is so high, the voltage on the
inverting input can be maintained almost equal to Vin.

- Let's say that our op-amp has a differential voltage gain of
200,000.
- If Vin equals 6 volts, the output voltage will be

5.999970000149999 volts.
- This creates just enough differential voltage (6 volts -
5.999970000149999 volts = 29.99985 µV) to cause 5.999970000149999
volts to be manifested at the output terminal, and the system
holds there in balance.
- As you can see, 29.99985 µV is not a lot of differential, so for
practical calculations, we can assume that the differential
voltage between the two input wires is held by negative feedback
exactly at 0 volts.

- One great advantage to using an op-amp with negative feedback is
that the actual voltage gain of the op-amp doesn't matter, so long
as its very large.
- If the op-amp's differential gain were 250,000 instead of
200,000, all it would mean is that the output voltage would hold
just a little closer to Vin (less differential voltage needed

between inputs to generate the required output).
- In the circuit just illustrated, the output voltage would still
be (for all practical purposes) equal to the non-inverting input
voltage.
- Op-amp gains, therefore, do not have to be precisely set by the
factory in order for the circuit designer to build an amplifier
circuit with precise gain.
- Negative feedback makes the system self-correcting.
- The above circuit as a whole will simply follow the input
voltage with a stable gain of 1.

- Going back to our differential amplifier model, we can think of
the operational amplifier as being a variable voltage source
controlled by an extremely sensitive null detector, the kind of
meter movement or other sensitive measurement device used in
bridge circuits to detect a condition of balance (zero volts).
- The "potentiometer" inside the op-amp creating the variable
voltage will move to whatever position it must to "balance" the
inverting and noninverting input voltages so that the "null
detector" has zero voltage across it:

- As the "potentiometer" will move to provide an output voltage
necessary to satisfy the "null detector" at an "indication" of
zero volts, the output voltage becomes equal to the input voltage:
in this case, 6 volts.
- If the input voltage changes at all, the "potentiometer" inside
the op-amp will change position to hold the "null detector" in
balance (indicating zero volts), resulting in an output voltage
approximately equal to the input voltage at all times.

- This will hold true within the range of voltages that the op-amp
can output.
- With a power supply of +15V/-15V, and an ideal amplifier that
can swing its output voltage just as far, it will faithfully
"follow" the input voltage between the limits of +15 volts and -15
volts.
- For this reason, the above circuit is known as a voltage
follower. Like its one-transistor counterpart, the common-
collector ("emitter-follower") amplifier, it has a voltage gain of
1, a high input impedance, a low output impedance, and a high
current gain.
- Voltage followers are also known as voltage buffers, and are
used to boost the current-sourcing ability of voltage signals too
weak (too high of source impedance) to directly drive a load.
- The op-amp model shown in the last illustration depicts how the
output voltage is essentially isolated from the input voltage, so
that current on the output pin is not supplied by the input
voltage source at all, but rather from the power supply powering
the op-amp.

- It should be mentioned that many op-amps cannot swing their
output voltages exactly to +V/-V power supply rail voltages.
- The model 741 is one of those that cannot: when saturated, its
output voltage peaks within about one volt of the +V power supply
voltage and within about 2 volts of the -V power supply voltage.
- Therefore, with a split power supply of +15/-15 volts, a 741 op-
amp's output may go as high as +14 volts or as low as -13 volts
(approximately), but no further.

- This is due to its bipolar transistor design. These two voltage
limits are known as the positive saturation voltage and negative
saturation voltage, respectively.
- Other op-amps, such as the model 3130 with field-effect
transistors in the final output stage, have the ability to swing
their output voltages within millivolts of either power supply
rail voltage.
- Consequently, their positive and negative saturation voltages
are practically equal to the supply voltages.

To Sum Up:
- Connecting the output of an op-amp to its inverting (-) input is
called negative feedback. This term can be broadly applied to any
dynamic system where the output signal is "fed back" to the input
somehow so as to reach a point of equilibrium (balance).

- When the output of an op-amp is directly connected to its
inverting (-) input, a voltage follower will be created. Whatever
signal voltage is impressed upon the noninverting (+) input will
be seen on the output.

- An op-amp with negative feedback will try to drive its output
voltage to whatever level necessary so that the differential
voltage between the two inputs is practically zero. The higher the
op-amp differential gain, the closer that differential voltage
will be to zero.

- Some op-amps cannot produce an output voltage equal to their
supply voltage when saturated. The model 741 is one of these. The
upper and lower limits of an op-amp's output voltage swing are
known as positive saturation voltage and negative saturation
voltage, respectively.

Divided feedback

- If we add a voltage divider to the negative feedback wiring so
that only a fraction of the output voltage is fed back to the
inverting input instead of the full amount, the output voltage
will be a multiple of the input voltage (please bear in mind that
the power supply connections to the op-amp have been omitted once
again for simplicity's sake):

- If R1 and R2 are both equal and Vin is 6 volts, the op-amp will

output whatever voltage is needed to drop 6 volts across R1 (to

make the inverting input voltage equal to 6 volts, as well,
keeping the voltage difference between the two inputs equal to
zero).
- With the 2:1 voltage divider of R1 and R2, this will take 12

volts at the output of the op-amp to accomplish.
- Another way of analyzing this circuit is to start by calculating
the magnitude and direction of current through R1, knowing the

voltage on either side (and therefore, by subtraction, the voltage
across R1), and R1's resistance.

- Since the left-hand side of R1 is connected to ground (0 volts)

and the right-hand side is at a potential of 6 volts (due to the
negative feedback holding that point equal to Vin), we can see that

we have 6 volts across R1.

- This gives us 6 mA of current through R1 from left to right.

- Because we know that both inputs of the op-amp have extremely
high impedance, we can safely assume they won't add or subtract
any current through the divider.
- In other words, we can treat R1 and R2 as being in series with

each other: all of the electrons flowing through R1 must flow

through R2.

- Knowing the current through R2 and the resistance of R2, we can

calculate the voltage across R2 (6 volts), and its polarity.

- Counting up voltages from ground (0 volts) to the right-hand
side of R2, we arrive at 12 volts on the output.

- Upon examining the last illustration, one might wonder, "where
does that 6 mA of current go?"
- The last illustration doesn't show the entire current path, but
in reality it comes from the negative side of the DC power supply,
through ground, through R1, through R2, through the output pin of

the op-amp, and then back to the positive side of the DC power
supply through the output transistor(s) of the op-amp.
- Using the null detector/potentiometer model of the op-amp, the
current path looks like this:

- The 6 volt signal source does not have to supply any current for
the circuit: it merely commands the op-amp to balance voltage
between the inverting (-) and noninverting (+) input pins, and in
so doing produce an output voltage that is twice the input due to
the dividing effect of the two 1 kΩ resistors.
- The voltage gain of this circuit, overall, can be changed by
just by adjusting the values of R1 and R2 (changing the ratio of

output voltage that is fed back to the inverting input).
- Gain can be calculated by the following formula:

- Note that the voltage gain for this design of amplifier circuit
can never be less than 1.
- If we were to lower R2 to a value of zero ohms, our circuit would

be essentially identical to the voltage follower, with the output
directly connected to the inverting input.
- Since the voltage follower has a gain of 1, this sets the lower
gain limit of the noninverting amplifier.
- However, the gain can be increased far beyond 1, by increasing R2
in proportion to R1.

- Also note that the polarity of the output matches that of the
input, just as with a voltage follower.
- A positive input voltage results in a positive output voltage,
and vice versa (with respect to ground).
- For this reason, this circuit is referred to as a noninverting
amplifier.

- Just as with the voltage follower, we see that the differential
gain of the op-amp is irrelevant, so long as its very high.
- The voltages and currents in this circuit would hardly change at
all if the op-amp's voltage gain were 250,000 instead of 200,000.
- This stands as a stark contrast to single-transistor amplifier
circuit designs, where the Beta of the individual transistor
greatly influenced the overall gains of the amplifier.
- With negative feedback, we have a self-correcting system that
amplifies voltage according to the ratios set by the feedback
resistors, not the gains internal to the op-amp.

- Let's see what happens if we retain negative feedback through a
voltage divider, but apply the input voltage at a different
location:

- By grounding the noninverting input, the negative feedback from
the output seeks to hold the inverting input's voltage at 0 volts,
as well.
- For this reason, the inverting input is referred to in this
circuit as a virtual ground, being held at ground potential (0
volts) by the feedback, yet not directly connected to
(electrically common with) ground.
- The input voltage this time is applied to the left-hand end of
the voltage divider (R1 = R2 = 1 kΩ again), so the output voltage

must swing to -6 volts in order to balance the middle at ground
potential (0 volts).
- Using the same techniques as with the noninverting amplifier, we
can analyze this circuit's operation by determining current
magnitudes and directions, starting with R1, and continuing on to

determining the output voltage.

- We can change the overall voltage gain of this circuit, overall,
just by adjusting the values of R1 and R2 (changing the ratio of

output voltage that is fed back to the inverting input). Gain can
be calculated by the following formula:

- Note that this circuit's voltage gain can be less than 1,
depending solely on the ratio of R2 to R1.

- Also note that the output voltage is always the opposite
polarity of the input voltage.
- A positive input voltage results in a negative output voltage,
and vice versa (with respect to ground).
- For this reason, this circuit is referred to as an inverting
amplifier.
- Sometimes, the gain formula contains a negative sign (before the
R2/R1 fraction) to reflect this reversal of polarities.

- These two amplifier circuits we've just investigated serve the
purpose of multiplying or dividing the magnitude of the input
voltage signal.
- This is exactly how the mathematical operations of
multiplication and division are typically handled in analog
computer circuitry.

To Sum Up:

- By connecting the inverting (-) input of an op-amp directly to
the output, we get negative feedback, which gives us a voltage
follower circuit. By connecting that negative feedback through a
resistive voltage divider (feeding back a fraction of the output
voltage to the inverting input), the output voltage becomes a
multiple of the input voltage.

- A negative-feedback op-amp circuit with the input signal going
to the noninverting (+) input is called a noninverting amplifier.
The output voltage will be the same polarity as the input. Voltage
gain is given by the following equation: AV = (R2/R1) + 1

- A negative-feedback op-amp circuit with the input signal going
to the "bottom" of the resistive voltage divider, with the
noninverting (+) input grounded, is called an inverting amplifier.
Its output voltage will be the opposite polarity of the input.
Voltage gain is given by the following equation: AV = -R2/R1

Precision voltage follower

SCHEMATIC DIAGRAM

INSTRUCTIONS

- if we want the op-amp to behave as a true amplifier, we need it
to exhibit a manageable voltage gain.
- Since we do not have the luxury of disassembling the integrated
circuitry of the op-amp and changing resistor values to give a
lesser voltage gain, we are limited to external connections and
componentry.
- Actually, this is not a disadvantage as one might think, because
the combination of extremely high open-loop voltage gain coupled
with feedback allows us to use the op-amp for a much wider variety
of purposes, much easier than if we were to exercise the option of
modifying its internal circuitry.

- If we connect the output of an op-amp to its inverting (-)
input, the output voltage will seek whatever level is necessary to
balance the inverting input's voltage with that applied to the
noninverting (+) input.
- If this feedback connection is direct, as in a straight piece of
wire, the output voltage will precisely "follow" the noninverting
input's voltage.
- Unlike the voltage follower circuit made from a single
transistor (see chapter 5: Discrete Semiconductor Circuits), which
approximated the input voltage to within several tenths of a volt,
this voltage follower circuit will output a voltage accurate to
within mere microvolts of the input voltage!

- Many op-amps, the specified models included, cannot "swing"
their output voltage exactly to full power supply ("rail") voltage
levels.
- In this case, the "rail" voltages are +18 volts and 0 volts,
respectively.
- Due to limitations in the 1458's internal circuitry, its output
voltage is unable to exactly reach these high and low limits.
- You may find that it can only go within a volt or two of the
power supply "rails."
- This is a very important limitation to understand when designing
circuits using operational amplifiers.

- If full "rail-to-rail" output voltage swing is required in a
circuit design, other op-amp models may be selected which offer
this capability.
- The model 3130 is one such op-amp.

- Precision voltage follower circuits are useful if the voltage
signal to be amplified cannot tolerate "loading;" that is, if it
has a high source impedance.
- Since a voltage follower by definition has a voltage gain of 1,
its purpose has nothing to do with amplifying voltage, but rather
with amplifying a signal's capacity to deliver current to a load.

- Voltage follower circuits have another important use for circuit
builders: they allow for simple linear testing of an op-amp.
- One of the troubleshooting techniques recommended is to simplify
and rebuild. Suppose that you are building a circuit using one or
more op-amps to perform some advanced function.
- If one of those op-amps seems to be causing a problem and you
suspect it may be faulty, try re-connecting it as a simple voltage
follower and see if it functions in that capacity.
- An op-amp that fails to work as a voltage follower certainly
won't work as anything more complex!

Noninverting amplifier

SCHEMATIC DIAGRAM

INSTRUCTIONS
- This circuit differs from the voltage follower in only one
respect: output voltage is "fed back" to the inverting (-) input
through a voltage-dividing potentiometer rather than being
directly connected.
- With only a fraction of the output voltage fed back to the
inverting input, the op-amp will output a corresponding multiple
of the voltage sensed at the noninverting (+) input in keeping the
input differential voltage near zero.
- In other words, the op-amp will now function as an amplifier
with a controllable voltage gain, that gain being established by
the position of the feedback potentiometer (R2).

- Because the output voltage increases in a positive direction for
a positive increase of the input voltage, this amplifier is
referred to as noninverting.
- If the output and input voltages were related to one another in
an inverse fashion (i.e. positive increasing input voltage results
in positive decreasing or negative increasing output), then the
amplifier would be known as an inverting type.
- The ability to leverage an op-amp in this fashion to create an
amplifier with controllable voltage gain makes this circuit an
extremely useful one.
- It would take quite a bit more design and troubleshooting effort
to produce a similar circuit using discrete transistors.

This knowledge of Diodes and OpAmps gives us the tools to
construct near every form of analogue logic circuit that can be
built:

Analogue Logic Funtions and How They Are Achieved:

- CV Mixer }
- Audio mixer } - uses OpAmps to perform summing/addition
- Matrix mixer }
- polarising mixers – use OpAmps to further perform subtraction
also.

- VCA – uses operational transconductance amplifiers or
transistors configured as VC variable resistors to perform
multiplication and squaring
- Polarising VCAs/4 Qdnt. Multipliers/Ring Mods – use the same
circuitry as VCAs to perform multiplication, squaring (freq
doubling), division, square root, phase angle detection and
rectification and much more besides:

Some Applications of Analogue Multipliers:

analogue multipliers can be used, amongst a wider range of things,for the
following purposes:
- Voltage Squarer
- Frequency doublers
- Voltage divider
- Square rooter
- Phase angle detector
- Rectifier

Voltage Squarer:

- The figure shows the multiplier connected as a squaring circuit.
- The inputs can be positive or negative, represented by any corresponding
voltage level between 0 and 10V.
- The input voltage Vi to be squared is simply connected to both the input
terminals, and hence we have,

Vx = Vy = Vi

and the output is

V0 = Kvi2

- The circuit thus performs the squaring operation.
- This application can be extended for frequency doubling applications.

Frequency doublers:

- The figure shows the squaring circuit connected for frequency doubling
operation.
- A sine-wave signal Vi has a peak amplitude of Av and frequency of f Hz.
- Then, the output voltage of the doublers circuit is given by

- Assuming a peak amplitude Av of 5V and frequency f of 10KHz,

V0 = 1.25 – (1.25 x cos2 x 20000)t ***CHECK***

- The first term represents the dc term of 1.25V peak amplitude.
- The input and output waveforms are shown in figure.
- The output waveforms ripple with twice the input frequency in the rectified

output of the input signal.
- This forms the principle of application of analog multiplier as rectifier of
ac signals.

- The dc component of output V0 can be removed by connecting a 1µF coupling
capacitor between the output terminal and a load resistor, across which the
output can be observed.

Voltage Divider:

- In a voltage divider circuit the division is achieved by connecting the
multiplier in the feedback loop of an op-amp.

- The voltages Vden and Vnum represent the two input voltages, Vdm forms one
input of the multiplier, and output of op-amp VoA forms the second input.

- The output VOA forms the second input.
- The output VOM of the multiplier is connected back of op-amp in the feedback
loop.
- Then the characteristic operation of the multiplier gives:

Vom = KVOA Vdm (1)

- As shown in the figure, no input signal current can flow into the inverting
input terminal of op-amp, which is at virtual ground.
- Therefore, at the junction a,

i1 + i2 =0,
the current i1 = Vnum / R
where R is the input resistance and,
the current i2 = Vom /R

With virtual ground existing at a,

i1+i2 = Vnum / R + Vom /R = 0

KVOA Vden = - Vnum

 or

voA=- vnum/Kvden

where Vnum and Vden are the numerator and denominator voltages respectively.

- Therefore, the voltage division operation is achieved.
- Vnum can be a positive or negative voltage and Vden can have only positive
values to ensure negative feedback.
- When Vdm is changed, the gain 10/Vdm changes, and this feature is used in
automatic gain control (AGC) circuits.

Square Rooter:

- The divider voltage can be used to find the square root of a signal by
connecting both inputs of the multiplier to the output of the op-amp.
- Substituting equal in magnitude but opposite in polarity (with respect to
ground) to Vi.
- But we know that Vom is one-term (Scale factor) of

V0 * V0 or -Vi = Vom = V2/1 0

Solving for V0 and eliminating √-1 yields,

V0 = √10|Vi |

- the Eqn. states that V0 equals the square root of 10 times the absolute
magnitude of Vi.

- The input voltage Vi must be negative, or else, the op-amp saturates.
- The range of Vi is between -1 and -10V. Voltages less than -1V will cause
inaccuracies in the result.

- The diode prevents negative saturation for positive polarity Vi signals.
- For positive values of Vi the diode connections are reversed.

Phase Angle detector:

- The multiplier configured for phase angle detection measurement is shown in
the figure.
- When two sine-waves of the same frequency are applied to the inputs of the
multiplier, the output V0 has a dc component and an AC component.

- The trigonometric identity shows that

Sin A sin B =1/2 (cos (A-B) – cos (A+B))

- When the two frequencies are equal, but with different phase angles, e.g. A =
2πft +θ for signal Vx and,

B = 2πft for signal Vy, then using the identity

 [sin (2 ft+)][sin2 ft)]
= 1/2[cos -cos(4 ft +)]
= 1/2(dc- the double frequency term)

- Therefore, when the two input signals Vx and Vy are applied to the multiplier,
V0 (dc) is given by:

- where Vxp and Vyp are the peak voltage amplitudes of the signals Vx and Vy.
- Thus, the output V0(dc) depends on the factor cos θ. A dc voltmeter can be
calibrated as a phase angle meter when the product of Vxp and Vyp is made equal
to 20.
- Then, a (0-1) V range dc voltmeter can directly read cos θ, with the meter
calibrated directly in degrees from a cosine table.
- The input and output waveforms are shown in the figure.

- Then the above eqn becomes:

V0 (dc) = cos θ

if we make the product Vxp Vyp = 20
or, in other words,

Vxp – Vyp = 4.47V.

- semi analogue AND – MIN() functions achieved via diode AND
circuits perform certain analogue functions but not the full range
a VCA does.

- semi analogue OR –MAX() functions achieved via diode OR circuits
can perform certain analogue functions but not the full range an
opamp mixer can.

- [only the non-inverting logical AND and logical OR functions can
be realized by diode gates].

- Analogue SORT can be configured to do anything from put two
values low to high/vice versa, to ordering a whole list.
- second largest or second smallest of three, when using a 3 input
diode logic circuit gives analogue median.
- these are actually special cases of applied MAX() and MIN()

combinations.

- crossfaders
VC crossfaders can kinda work as logic modules:

- AND GATE aka 'MIN' = Signal A -> Input 1 / Signal B -> CV
(Basically this is same as a linear VCA)
- OR GATE aka 'MAX' = Signal A -> Input 1 & CV / Signal B -> Input
2
- XOR GATE aka 'Ring Mod' = Signal A -> Input 1 / Inverted Signal
A -> Input 2, Signal B -> CV Input

note, however, AND & OR are limited to gate [i.e. digital] only
outputs, whereas, the XOR is true analogue with all CV signals.

- bi-directional switches
- whilst not technically true analogue logic, they give
interesting results when processing CVs and sometimes even audio:
- momentary mode produces (if 1 input to 2 output) IF, THEN, ELSE
CONDITIONAL LOGIC functions when triggered (>certain voltage
threshold), then output 2, else output 1.

- momentary mode produces (when 2 input to 1 output) a NOT GATE -
if the gate is high by default, gate is low when triggered.

- latch mode produces (if 1 input to 2 output) FLIP-FLOP LOGIC
when triggered - flip-flops output 1 & output 2 alternate.

- Diode inverters make positive input only NOT gates

- OpAmp inverters make an true analogue inversion – i.e. a NOT
function.

- attenuation – even the most basic manual attenuator, a simple
passive potentiometer or even static pad type level reducer is
performing a division function.

- attenuversion – see above – signed subtraction?

- offset – static offset voltage sources provide the function of a
mathematical constant function in a given calculation or circuit.

- slope detector & comparators – perform dependent logic functions
although their outputs are digital not analogue.

- with only three comparators, any possible boolean gate can be

constructed.

- Analogue 'comparator' circuits can be constructed that output a
continuous voltage between 0 and 100% dependent on a predefined
setting to be triggered by an OpAmp threshold comparator combined
with a DC offset source.
- this case of an analogue comparator circuit can be applied to
dynamic comparator functions, window comparators and hence
combinations thereof.

- sequential switches and matrices – a variety of complex logic
functions such as multi-operation math functions similar to the
IF, THEN, ELSE and FLIPFLOP logic achievable by momentary and
latching bi-directional switches.

- MAJORITY logic built from diodes can give an analogue '(a and b)
or (a and c) or (b and c)' function.

- ODD/EVEN PARITY gates constructed from diodes - XOR into XOR
gives '(A o+ B) o+ C' functions.

- IMPLY gates built from diodes – [result in +ve rectification?]
[3 way rectify module?]
- NIMPLY gates from diode logic – [result in -ve rectification??]

SOME IDEAS FOR FINDING ANALOGUE LOGIC IN EURORACK:

Some readily available analogue logic modules in the eurorack
world can be listed off easily, but not all are apparent to
everyone as having analogue logic possibilities.

The usual candidate for Analog Logic Modules that spring to
mind:
- Mannequins - Cold Mac
- Mystic Circuits - ANA
- Mutable Instruments - Kinks
- WMD - OSD
- Intellijel - μMod II
- Ladik – Median,
- Any MIN/MAX – there's so many out there I don't need to list em!
- Intellijel - Bifold
-

Less obvious ones you may now want to think about:

VC crossfaders e.g.
- Happy Nerding – Xfade
- WMD – AXYS
- RYO/Kymatica Devices - 2xVCX
-

Bi-directional momentary switches and switches with latches
e.g.
- Instruo – Tain
- Ritual Electronics - Pointeuse
- RYO – DT Switch
- RYO - Paths

also consider:
- VC slope gens, slew limiters and other DUSG type modules such as
Makenoise Maths or the Doepfer A-171-2
- slope detectors
- envelope followers
- s&h/t&h
- envelopes and contour generators
- unusual mixers
- static offset voltage sources
-

in other words many basic utilities and everyday 'plain basic
building block' type modules prove to be the best analogue logic
tools, and always remember: feedback can do wonderful things!

. .

The following math derivations and calculations are purely for the
intellectual interest of those who have survived this far – they
are in no way essential to understand anything else on this site
or any of the patch ideas, module modifications or anything else I
write about:

∈ Denotes set membership, and is read "in" or "belongs to". That
∈is, x X means that x is an element of the set X.

∪ Denotes the union of two sets A and B is the set of elements
which are in A, in B, or in both A and B ∪. In symbols, A B = {x:x
∈ ∈ A or x B}.

∩ Denotes the intersection of two sets A and B is the set of
elements which are in both A and B ∈. In symbols, A ∩ B = {x:x A

∈and x B}

∨ Denotes the inclusive disjunction of two sets A and B. Is true
if either A or B, or both A and B are true.

∧ Denotes the conjunction of two sets A and B. Is true if both A
and B are true.

Now to use those symbols to aid us in mathematically demonstrating
the workings of analogue logic:

NOT/Inverting:
- Complement. The complement groups all the elements that do not
reside in the set μ(x).

∈μ (x) = 1 − μ (x), x X

.

Gain:
- mathematically the Scalar product. An analogue set can be
multiplied by a scalar S.

μ(x) = S · μ
1

∈(x), x X

.

Square: [special case*]
- mathematically raising to a Power. The power operation elevates
an analogue set to a particular number m.

μ(x)=[μ
1

∈(x)]m, x X

*The case m = 2 is known as the concentration of a fuzzy set. 'The
concentration is the result of putting the same value into both
inputs of a bipolar VCA or four quadrant multiplier.

.

Max()/Multiply: [diode MAX, VCA, VC X-fade, 4-Quadrant
Multiplier/Bi-polar VCA/Ring Mod.]

- mathematically the Union. The union of two or more analogue sets
joins all the elements of the universe of discourse that belong in
some degree to any of those sets. This operation can be done with
any triangular co-norm. In this particular implementation, we
unite fuzzy sets by selecting the maximum values among them.

∪μ (x) = μ
1

∨(x) μ
2

∨ ∨(x) … μn(x) = max(μ
1
(x), μ

2
∈(x), …, μn(x)), x X

.

Addition: [MIN, mixer/varieties of special mixer]
- mathematically the Intersection. The intersection of two or more
analogue sets extracts all the elements of the universe of
discourse that belong in some degree to all of those sets. This
operation can be done with any triangular norm. In this particular
implementation, we unite fuzzy sets by selecting the minimum
values among them.

μ∩(x) = μ
1

∧(x) μ
2

∧ ∧(x) … μn(x) = min(μ
1
(x), μ

2
∈(x), …, μn(x)), x X

. .

From the above we can derive the math for, for example, a 4x4
matrix mixer:

Any given output is:

μ∩(x
i
y

o
) = μ

1
∧ (xiyo) μ2 (x

i
y

o
∧ ∧) ... μn (x

i
y

o
)

= min (μ
1
 (x

i
y

o
), μ

2
 (x

i
y

o
), μ

3
 (x

i
y

o
), μ

4
 (x

i
y

o
)), x

i
y

o
∈ X

i
Y

o

Where x
i
 is the horizontal row number, and y

i
 the vertical column

number

Where a row x
1
 is:

μ∩(x
1
y

o
) = μ

1
 (x

1
y

1
∧) μ

2
 (x

1
y

2
∧) ... μ

n
 (x

1
y

o
)

= min (μ
1
(x

1
y

1
), μ

2
 (x

1
y

2
), μ

3
 (x

1
y

3
), μ

4
 (x

1
y

4
)), x

1
y

o
∈ X

1
Y

o

And a column y
3
 is:

μ∩(x
i
y

3
) = μ

1
 (x

1
y

3
∧) μ

2
 (x

2
y

3
∧ ∧) ... μ

n
 (x

i
y

3
)

= min (μ
1
(x

1
y

3
), μ

2
 (x

2
y

3
), μ

3
 (x

3
y

3
), μ

4
 (x

4
y

3
)), x

i
y

3
∈ X

i
Y

3

. .

similarly, following some expanding of/breaking down into basic
concepts it can be demonstrated that the relevant mathematics can
be derived for all the above analogue logic tools using just these
basic pieces of fuzzy logic mathematics.

. .

IF, AND, THEN

the min-max method where an analogue rule would have the form:

 IF x
1
 is A

1
k AND x

2
 is A

2
k THEN yk is Bk for k=1,2,…

where A
1
k and A

2
k are ananlogue inputs and Bk is the desired

output.

For r disjunctive analogue IF-THEN rules, the analogue output will
be:

μBk(y) = max k [min [μA
1
k (input (1)), μA

2
k (input (2)), …]] for k = 1, 2, …, r

Looking at the XOR truth table we can write it out long form:

XOR truth table

Input Output

A B A + B A x B

0 0 0 1 (A AND B)

0 1 1 0 (A OR B)

1 0 1 0 (A OR B)

1 1 0 1 (A AND B)

To produce the proof:

A XOR B = 1 - (A AND B) AND (A OR B)
 = (1 - A OR 1 - B) AND (A OR B)
 = ([A OR 1 - B] AND [1 - A OR 1 – B]) AND ([A OR B] AND [1 - A OR B])
 = ([A AND 1 - B] OR 1 - B) AND ([A AND 1 - B] OR B)

Therefore

A XOR B = (A AND [1 - B]) OR ((1 - A) AND B)

Using the above, we can deduce the mathematical formula for :

IF, THEN, ELSE

IF x
1
 is A

1
k THEN y

1
 is Bk ELSE z

1
 is Ck for k=1, 2, ...

Where A
1
k is an analogue input and Bk and Ck are outputs.

For r disjunctive analogue IF-THEN rules, the analogue output will
be:

uBk(y) = XOR [μA
1
k, μA

2
k, …] for k = 1, 2 ,…, r

uBk(y) = [1 - μA
1
k AND μA

2
k] OR [1 - … AND …] for k = 1, 2, …, r

μBk(y) = min [max [1 – μA
1
k (input 1), μA

2
k (input 2)], max [1 - …, …]] for k = 1, 2, …, r

Isn't that just great :)

[yeah, ok, enough – lets go build an analogue computer from
serge!!!]

. .

- As you may have noticed earlier on there was a brief mention of
a logic gate i've yet to cover – the 'imply' gate and it's
inverted counterpart, the 'nimply' gate so here's an intro to
those two guys:

IMPLY Gate

The IMPLY logic gate implements a “logical conditional”. It forms
the statement “If A then B”.

- The output of this gate is, “if the input A is true then input B
is also true” So when A is True “HIGH” and B is True “HIGH”, the
output is true “HIGH”.

- When A is true but B is false then the output is false.

- Now if the input A is false then automatically the output
becomes true regardless of input B i.e. the output is True in both
cases.

A B Output

0 0 1

0 1 1

1 0 0

1 1 1

NIMPLY Gate

- NIMPLY Logic gate has an inverted output of the IMPLY Logic
gate.

- It implements the statement “If A but not B”.

- It means the output is true when and only when the input A is
true but B is False.

A B Output

0 0 0

0 1 0

1 0 1

1 1 0

- Note these gates can be built in analogue circuitry using opamps
and other true analogue gate components but will not work as diode
logic due to the nature of diode NOT gates/Inverters.
- As a result of the above, to achieve the analogue proofs and
concept demonstrations in the following set of examples, diode
logic can't be considered, only actual OpAmp inverters and mixers.
- Although technically diode OR fucnctions could be used, a mix of
diode and OpAmp logic being workable, if you're already using
Opamp inverters, you got a quad OpAmp IC on the go most likely –
why not use the remaining amplifiers to do the mixing...

- the imply gate works out as a simple subtraction device and
output is equal to the difference between the two inputs.
- since diode logic doesn't work consistently for inversion, an
imply gate works somewhat weirdly in analogue logic situations;

- as a result, it’s definitely worth noting that the inputs on
these are taken to be magnitude only so you can’t use negative
numbers within a subtraction and achieve the correct arithmetic
result.
- The output can be negative and will be arithmetically correct,
assuming that both inputs are positive. This might be a bit
confusing, so here are some examples:

Inputs | | Correct | imply
 + | - | Answer | Output

 100 | 35 | 65 | 65
 50 | 65 | -15 | -15
 50 | -10 | 60 | 40
 -50 | 30 | -80 | 20

- When including negative values in the subtraction, as either
operand, the result is incorrect.

50 – (-10) should give 60

however the actual calculation performed is:

50 – 10, to give 40.

- As this is generally only going to be used in patching up fun cv
and audio signal manipulation creations there isn't really a
problem with this behaviour, it juts results in interesting quirks
like wavefolding or dead spots etc., but,
- when trying to build an actual analogue computer or perform
specific accurate calculations its important to bear this in mind
and so OpAmp mixers should be used not diode based imply gates.

- So, now i'll explain why imply/nimply gates are suddenly of such
great interest – in a very long winded way:

Generic Signal Notation:

- Generic signals will be described as follows (specific diagrams
may use other labels for special cases):

Inputs: xn

Outputs: yn

Internals: zn

- For example, the function of an AND gate on N analogue signals
is described as:

z = min (x1, x2, x3, ..., xN)

Signed and Unsigned Numbers:

- Since in analogue logic some analogue signals can take negative
values and some can't (see section on diodes and diode logic), for
differentiation between the two, the terms "signed", for values
that can take negative values, and "unsigned" for those that can't
will be used.
- [remember there’s a mathematical limit of 100 for the purposes
of these calculations, although it is in fact 100% of the rail
voltage irl]:

Unsigned: 0 ≤ s ≤ 100
Signed: -100 ≤ s ≤ 100

- Note that many of these circuits systems will only work with
unsigned values. However, you will be able to use them with inputs
that are technically signed as long as you can guarantee that the
input values will never drop below 0.
- Alternatively you can choose to ignore the value of the signal
if it is negative (forcing it to 0) but using the positive
component.

Positive and Negative Components:

- Splitting signed signals is a big part of how the limitations of
calculations taking absolute values only are circumvented,
obtaining the positive and negative components.
- These are the positive and negative outputs of a ‘splitter’
subcircuit and will be annotated as follows:

Positive output: z+

Negative output: z-

- Note that in these cases, only one of z+ and z- can ever be non-
zero at the same time and in both cases the signal is unsigned.
This splitting is therefore very similar to taking the absolute
value, in the sense that one of the two outputs of the splitter
will be the absolute value and the other will be 0, so the
following is true:

max (z+, z–) = |z|

|z| is the absolute value of signal “z” :

Where :
|z| = |-z|
0 ≤ |z|

- All arithmetic calculations in the next set of examples will be
using a theoretical maximum value of 100.
- this is an absolute mathematical value to make explanations
easier and the math easier to understand.
- In actuality the maximum value of any equation involving
voltages in analogue logic circuits would be +/-100% of rail
voltage, so for eurorack modular that would generally be +/-12V.

so now i've defined the generic terms terms we'll be using lets
see why imply and nimply gates are so useful in analogue logic:

- Given that:

z = x + y = 100 - (100 - (x + y)) is true,

- [remember 100 is the arbitrary maximum value to ease the math but irl would be
100% of rail voltage]

- And, one can add numbers together using nothing but subtraction;
- [I’ll demonstrate: rather than adding both numbers together,
lets subtract them both from 100, then subtract the answer from
100]
- using values of 32 and 43 as examples, normally the calculation
would be:

z = x
1
 + x

2

z = 32 + 43
z = 75

- Using the equation above:

z = 100 - (100 - (x
1
 + x

2
))

z = 100 - (100 - (32 + 43))
z = 100 - (100 - 75)

z = 100 - (25)
z = 75

- This looks ridiculously long-winded when written down like that,
but, there is method in my madness;

- if you remember that the above equation;

z = 100 - (100 - (x + y))

- Can be rewritten as:

z = 100 - ((100 - x) + (- y))

And,
- NOT gates perform the analogue function (100 - |x|), and,
- IMPLY gates perform a special case of signed addition, Since OR
gates perform addition – imply gates perform a type of subtraction
basically.

- note here that there is therefore a degree of overlap between
imply gates and OpAmps in inverting amplifier configuration.

one can simplify this to give the following circuit for basic
addition with 2 inputs:

x
1
----—> |NOT| —> |IMPLY +ve |

 | + | ----—> |NOT| ----—> z
x
2
-------------—> |IMPLY -ve |

do note here:
This circuit will return the arithmetically correct answer for the sum of its
inputs if the following conditions are met:
- All inputs are greater than zero.
- the sum of the inputs is smaller than, or equal to 100.

- The first assumption is forced by the nature of subtraction using diode logic,
i.e. it just can't handle subtraction of negatives.
- the second assumption is due to the fact that values over 100 [irl 100% of
rail voltage] are out of range.

- Still long winded and could have just been done with just OR
gates? Look what happens when we extend the number of inputs:

x
1
 -—> |NOT| --—> |IMPLY +ve|

 | + | -—> |IMPLY +ve|
x
2
 -------———---> |IMPLY -ve| | + | -—> |IMPLY +ve|

x
3
 -------———————————————-------> |IMPLY -ve| | + | --—> |NOT| --—> z

x
4
 -------——————————————————————————————————----> |IMPLY -ve|

- i.e. it can then be extended for any number of inputs, and the
inversions only need to be carried out at the beginning and end of
the calculation - everything in between is IMPLY gates alone -
simple subtraction.

- This is relevant because a [inverting OpAmp] mixer is just the
inverted top input, the inverted input of each other input into
summers [or ORs, or IMPLY gates] with a final inverter at the end
- i.e. each stage of NOT or IMPLY can be replaced by an inverting
OpAmp stage so only a quad, dual and quad or pair of quad amps
will usually suffice for a whole mixer!

- Even better, you can extend this demonstration of logic into
math to show the same runs true for addition and subtraction
together [attenuverting mixers] or even switched non/attenuverting
and [scaleable (i.e. with gain on the non-inverting) mixers -
often making there a possibility of multiplying certain factors].
- Also consider static dc offsets in the mix as an option when
nothings plugged in - a normalled offset gives a constant number c
in the z = c + (x

1
 + x

2
) equation, or can be used in more complex

ways if extra math is occurring!

- what's super cool is this is true for binary logic with not and
imply gates – the basic 1s and 0s a computer churns through and we
use for trigs, gates, clocks, etc, but its as above totally
analogue logic capable too - so one can use mixers as adders and
hence also OR gates as interchangeably as needed,
- with the caveat that we can feed in any continuously variable
data source - i.e. constant varying voltages, ac, into fractions
of a voltage as small as divisions will make any difference or the
until the limits of the electronics is reached.

- the mixer, whether an analogue OR gate from a pair of diodes
reverse biased and stuck together, a chain of inverting OpAmps, or
some transistor NOT gates, OR gates and other combos of
transistors and diodes (TTL), transistors/diodes/resistors (RTL)
or any other logic is still mixing something and hence can perform

addition at bare minimum - possibly the most valuable tool in your
electronic tool box for modular synthesis - they join everything
else together.

.
- Whilst writing this I was rubber ducking parts of this off
friends and got asked:

“why is non-inverting buffering/mixing bad practice - what are
some disadvantages of using non-inverting OpAmp configurations in
a mixer?”

- the main issue is balance; in the figure below, the top mixer is
balanced by the 10k over the OpAmp while the bottom one is
unbalanced:

- it has to do with virtual ground, at the convergence point the
node is 0v net.

- The relevance of this point is that it gets weird when you
upgrade the resistors to pots - as soon as you breadboard it and
start changing values with the pots, variations are created with
the non-inverting and it all gets screwy in places...

- mostly the disadvantages are to do with the situations when you
have one pot affecting another, things forming filters, things
bleeding etc – crucially as well, inverting buffers don't need and
extra stage to avoid the fact you need to first attenuate or mix
or gain or whatever then add a buffer then sum and the summer will
be inverting so you'll need another inverter to make the sum
positive.

- its fine with just two signals, inverting gives the minimum
number of steps to mix more than two.
- try it with three four or five - two signals you can do in a
dual or quad OpAmp, 3, 4 or 5 is a lot pf OpAmps non-inverting.
- best way to see is breadboard it and try wiggling knobs with.a
scope hooked up - feeling it out in the real world is a lot more
educational than math, logic, words or simulators but a simulator
will do fine for this:
- watch for things like voltage droops at all points [you don't
want em happening at ins or outs - cables are relevant as well as
internally], and likewise monitor amps flowing through things [it
may mostly be mA, but there's still heat dissipation etc.]
- Also monitor across a whole range of frequencies, both dc, ac,
moving/static etc
- look at everything and decide if you are happy(if you're lucky
you accidentally connect +12v straight to ground or get OpAmp
wrong way round and the power shorts, fuse or protection resistor
goes bang and you get magic smoke – yay!)

- mainly i'd argue specifically inverting is better when it comes
to multiple input [i.e.more than two] mixers because you need less
OpAmps total to not get weird mixing artefacts with the pots
- but, as soon as you start adding attenuversion or gain etc it
becomes absolutely essential because some of that simply requires
a negative feedback resistor and feedback connections that are
unavoidably inverting OpAmp setups

- rarely is there a call for just a simple 2 input non inverting
mixer setup in a single module that is just a mixer so usually
you're wanting inverting configurations

- non-inverting two input mixing is relevant sometimes in mixing
together two parts of a module like a high pass and low pass
feeding together for example but in reality that usually feeds
perhaps an output gain stage or whatever so you end up wanting to
invert the signal anyways;
- so, inverting mixers as ever usually end up used just to save

extra stages and minimise OpAmp totals.

. .

I was also quizzed on the ideal values for the input/feedback
resistor pairs;

- i like 47k, but, if i'm using attenuversion in a mixer then i
use 100k cos the pots can be 100k and its easy to get the pots.
- if its for some reason internal in a module and small values are
being used i might use 10k occasionally but thats rare
- i like 47k because it leaves room both sides to scale down or
up, its the middle number on the E series and its not huge heat
dissipation anywhere or a crazy vulnerable to being off if its a
1%

”why is the standard value 47 and not 50?”

- Each E series subdivides each decade magnitude into steps of 3,
6, 12, 24, 48, 96, 192 values.
- Subdivisions of E3 to E192 ensure the maximum error will be
divided in the order of 40%, 20%, 10%, 5%, 2%, 1%, 0.5%.
- look at the E12 series:

…,
1k, 1.2k, 1.5k, 1.8k, 2.2k, 2.7k, 3.3k, 3.9k, 4.7k, 5.6k, 6.8k, 8.2k,
10k, 12k, 15k, 18k, 22k, 27k, 33k, 39k, 47k, 56k, 68k, 82k,
100k, 120k, 150k, 180k, 220k, 270k, 330k, 390k, 470k, 560k, 680k, 820k,
1M, 1.2M, 1.5M, 1.8M, 2.2M, …,

- graph it: it's logarithmic!

take 1k through 1.2k to 1.5k;

1k + 10% = 1.10k } - these two values are close enough to
1.2k – 10% = 1.08k } adjacent to cover the range at 10% tol.

1.2k + 10% = 1.32k } - these two values are close enough to
1.5k – 10% = 1.35k } adjacent to cover the range at 10% tol.

- although the values are predefined standards agreed upon back in
the 60s, and have a lot of history behind them, its also a degree
of good sense, due to how resistors are easiest to make relatively
accurately, cheaply and durable/mass produced in factories without
measuring each one and winding a wire until the right resistance

is reached etc.
- they can just machine dose out carbon or whatever powder,
compress and dip in ceramic etc.

- As we have noted, there are a number of limitations to what
exactly you can do with diode logic, but, some can be worked
around, and, with a decent understanding of how the components
work and some creative re-arranging of equations, most desired
results can be achieved with sufficient circuitry.
- so, lets consider some other analogue logic circuits:

Analogue Signal Processing:

Dealing with Signal Duality - Conversion Techniques

- analogue systems have some major drawbacks - the most
significant of which is the lack of decision-making.
- taking some input values and doing theoretical number crunching
makes it easy to forget the actual reasons for he desired outcome
- the end goals.
- there’s more than just controlling values of outputs, i.e.
creating arbitrary voltages.
- although sometimes that's great and it's exactly what you want,
often it's not that exciting.

- The digital circuits looked at in depth, elsewhere on this site,
on the other hand, are anything but lacking excitement, hence the
ability to use a digital signal control the parameters of an
analogue calculation and the ability to make digital (TRUE /
FALSE) decisions based upon an analogue system would be desirable.
- This is where a range of conversion techniques, I.e. we are
back to ADCs and DACs but from the analogue logic end rather than
the digital POV.

Digital to Analogue Conversion

- Since the purpose of Digital to Analogue Conversion (DAC), in a
broad sense, is to conditionally modify the inputs to an analogue
circuit - for example, "if clock is high, set maximum limit on

tempo to 60bpm”.
- The first part of that sentence is digital (clock is either high
or low) and the second part is analogue (a maximum limit on the
value of tempo).

Basic Digital to Analogue Conversion:
Probably the simplest methods of Digital to Analogue Conversion is
the following:

Enable function based DAC
- The enable input (on a digital sequential logic function for
example) responds only to the digital component of the input
signal and will act as a switch to turn everything inside the
logic circuit on or off.
- If the digital circuit is controlling an analogue circuit then
an on / off switch for the analogue circuit has been created.

- One of the useful things about an analogue circuit is that you
can set the analogue value of it's output to be any integer in the
[mathematical] range -100 to +100.
- This means that when it’s switched on, the analogue circuit can
generate any (fixed) value desired.
- When it’s switched it off it will be stuck at 0 though.
- the the off=0% behaviour can't e directly modified, but some
analogue processing can be done afterwards if need be.

- now an arbitrary analogue value can be assigned to any digital
signal, or to use some technical parlance, it has been given it a
"weight". This directly gets around the analogue / signal duality
issue, by explicitly forcing the analogue signal to have some
direct relation to the digital.

A Note On the Subtleties of Enabling Microchips

- One of the coolest features of certain digital circuits is the
ability to disable and enable them at will.

- When enabled the circuit behaves normally,
- When disabled, all of the devices in the circuit turn off - any
components act like they don't exist,
- vibrators stop oscillating (and their sync desyncs), logic
devices stop updating and, crucially, all internal wiring goes to
0 (for both analogue and digital components).
- Note that if internal wiring goes to 0, so do all outputs from
the circuit.

- Whilst the internal wiring all goes to zero, internal states of
components are retained.
- So a Timer, Counter, Selector, Toggle etc., when re-enabled,
will return to it's previous value.

- This highlights a couple of important system design constraints
when working with components inside such logic circuits:

Firstly;
- if you create a system to create a permanent switch or set reset
(or any other logic tool for state retention) that stores the
current state in the wire, rather than internally to a component,
then it will lose it's state when the microchip is disabled.
- For example, the following images shows two implementations of
permanence:

fig 2.2.3 Permanent Switches

- The left circuit shows the switches before activation, middle is
after activation and on the right is after the circuit has been
deactivated and reactivated.
- In the loop-backed OR, the state is retained in the wire.
- In the counter, the state is retained internal to the component.
- For the most part, this is irrelevant - the overall behaviour is
the same for both devices, but if you place them in a circuit then
disable and re-enable it, then the loopback OR will reset, the
counter will not (as shown by the right hand part of that image).

Secondly;
- if you have any edge-triggered devices in your system, then the
re-enabling of the circuit may cause them to be re-triggered, as
the signal goes from FALSE to TRUE.

Sub-note on Edge-Triggered Logic;

- In digital electronics, a device is described as edge-triggered
if it updates at the instant a change of state is seen on the
input, rather than just updating constantly in response to changes
in the input.
- In most cases, it is the change from a FALSE value to a TRUE
value, known as a rising edge - Alternatively, a transition from
TRUE to FALSE is known as falling edge.

- Edge-triggered inputs include counters, toggles, select
switches, certain timer inputs, all reset signals and a whole host
of other thing].

- Overall, these are just design constraints.
- They could cause problems if you aren't aware of them, or they
can be leveraged to your advantage.
- Sometimes it's a good thing that everything resets when the
circuit is re-enabled - you can design an entire sub-circuit reset
around that very premise, typically so that upon each activation
of the sub-circuit it returns to a quiescent (or otherwise

predetermined) state.
- [neat!]

Analogue To Digital Conversion

- As mentioned earlier, analogue doesn't have the ability to make
decisions, so the ability to generate digital signals from an
analogue source is very important to get a whole lot of use out of
the analogue processing tools available.

Thresholding

- The simplest form of analogue to digital conversion is
thresholding;
- i.e. taking an analogue signal and saying, "if the value is
greater than x, perform action".
- Now one of the reasons for explaining the comparator function of
OpAmps becomes apparent!

- its also worth briefly mentioning here the existence of a
special type of comparator setup called a window comparator
– this is just two comparators in opposing +ve and -ve
configuration so that there is an upper and lower threshold so
forming a 'window' between which the comparator will trigger as
high.

Comparators - Greater / Less Than

- comparators are great if you have some fixed maximum and minimum
values for your range, but sometimes you will have ranges that
move.
- technically, to swap between one range and another you could
switch comparators quite easily, but this doesn't help if you want
the activation range to be more dynamic.
- What’s really needed is a method for comparing 2 analogue
signals, which is again pretty simple to do. To create a system
where input 1 must be greater than input 2 to activate:

x1 > x2

x1 - x2 > 0

- So, simply finding the difference between x
1
 and x

2
 (using

subtraction), if the difference is greater than 0, then x
1
 > x

2

- However, note, a comparator is one of those logic devices that
takes the absolute value of its input.
- This means that all negative values will be treated as positive,

which leads to an issue with the above equation.
- In this case it means that any non-zero difference will trigger
the output.
- So as is often the case when subtracting, we split the signal
and take the positive component only, to create an analogue
‘comparator’ circuit as shown:

fig 3.2.1 Analogue ‘Comparator’ circuit

- Note the placement of the dc offset source here:
- It actually takes up the entire range of the comparator, but at
exactly zero the comparator does not trigger the offset.
- As the signal has been split, this means that any negative value
will also read 0, so the "greater than" comparison has been
accurately created.

Comparators - Equality
- In the ‘comparator’ circuit above, an inequality test was in
fact made, before adding the splitter.
- So, inverting the "not equals to" test to a "not not equal to"
test, Or, if you prefer an "equal to" test we can create an
equality test - simple!

- Well, sort of…
- Using that method, the difference between the two signals would
have to be exactly zero, they really would have to be identical.
- However, in analogue systems, depending on what your input
sources are, having two signals at exactly the same value is quite
rare, So there will often be a need for margins of error on
concepts like equality.

- Again, this is very simple, remove the splitter and place the
offset as shown:

fig 3.3.1. Equality Comparator with 5% Margins of Error

- ‘Hanging’ the offset over the back of the comparator allows you
to detect at 0% (unlike before), and up to a certain percentage.
- The above detects anything from 0-5% so as long as the absolute
value of the difference between the two inputs is smaller than 5,
there is "equality".
- To clarify with examples:

| x
1

| x
2

| Output |
| | | |

15	17	TRUE
17	15	TRUE
95	94	TRUE
95	89	FALSE
89	94	FALSE

- The significant point being that it doesn't matter which which
is greater, as long as they are within 5% of each other then the
equality condition for this circuit is satisfied.

Comparators - Dynamic Ranges

- having covered static ranges, what about dynamic ranges?
- a mixture of the techniques above will need to be used.
- In the simplest form, a dynamic range has, say, a fixed upper
bound and a lower bound that can move;
- you can determine whether you are in the range by testing for
each boundary condition separately and ANDing the result.
- So for upper and lower boundaries of b

hi
& b

lo
:

bhi > x > blo

Which becomes:

(bhi > x) AND (x > blo)

or, if you prefer:

(x < bhi) AND (x > blo)

- Which is a horrible mix of analogue and digital systems all
mungled into a single none too pretty equation, but should be
vaguely straightforward to understand:
- To be in range you must be smaller than the high boundary and
greater than the low boundary [we have created a window
comparator, as mentioned earlier albeit a partly dynamic capable
one hence it has a degree more complexity than the most basic
form].

- However, there may be dynamic ranges that are better described
by a center point, where the input has to be within a fixed
distance from that center.
- This is actually the same configuration as the equality
comparator circuit, but with fixed margin of error;
- i.e. a 'non-dynamic' window comparator as described initially in
this section.

- Or, you might desire a range with lower boundary that moves and
a fixed range, so:

bhi = blo + 15

Where 15 is the size of the range. For this we use the following:

fig 3.4.1 Sliding Range with Fixed Width

- Noting that both upper and lower boundary are tested for inside
a single ‘comparator’ circuit.
- In addition to not having the second ‘comparator’ circuit, it’s
also not necessary to generate the value of the upper boundary -
it's implied in this system, so no need for an adder circuit or
anything fiddly like that.

- We can also have circuits where a center point and range size is
input, or lower bound and size of the range is input as a
variable, involving a bit of analogue processing to generate upper
and lower bounds.
- Really it depends on what exactly you are testing for.
- Depending on exact needs and the nature of the dynamic range in
question, more of the circuit can be pushed into the analogue
part, more into the digital part or more into the ‘comparator(s)’.
- It's actually a remarkably flexible system and there are a lot
of different techniques that can be employed here.

Summary

- Being able to switch between the analogue and digital signal
processing models at will, and the introduction of thresholding &
comparators / decision making opens up a whole world of hybrid
analogue / digital logic.
- without these constraints the inputs of analogue signals aren’t
limited to being simple voltage values, and the outputs no longer
have to just be a simple voltage value either.

A Few Notes On Scaling

- I don’t know if this will prove useful when you can simply use
an amplifier or attenuator module and adjust to needs but I’m
gonna dip a little into the math just for the sake of completeness
and to provide inspiration - who knows where it might be applied
usefully…

Basic Scaling

- Just to clarify, when talking about "scaling" here, what is
meant is multiplying or dividing an analogue signal by a fixed
value (known as the scaling coefficient).
- So, doubling or halving the value of a signal are examples of
scaling.
- The key thing to note is that it is an operation that has a
single input, so is very different to more familiar multiplication
and division operations, where you you would want to multiply one
analogue signal by another.
- in fact it is the same thing occurring, just one signal in the
equation comes from a fixed, internal [to the circuit] voltage
source [the scaling coefficient].

Basic Integer Up-Scaling
- Scaling a signal up is actually quite a simple thing to do, as
long as you only want to scale it by an integer (e.g. doubling,
tripling, etc., not multiplying by 2.5, for example).
For example, a coefficient of three:

z = kx
z = 3x
z = x + x + x

Where k is the scaling coefficient.

- We simply add the signal to itself k times.
- fine until k becomes unreasonably large, at which point it may
be significantly more efficient to find the prime factors* of the
number and re-express the addition using that.
- For the example of k = 100:

z = kx
z = 100x
z = (2 . 2 . 5 . 5) x

- Rather than an adder with 100 stages, instead 2 two-stage adders
and 2 5-stage adders can be used, which is significantly more
efficient with respect to both resources and tedious ‘wiring’.

*every natural number greater than 1 is either a prime itself or
can be ‘factorized’ as a product of primes.
The numbers greater than 1 that are not prime are called composite
numbers.
Writing a number as a product of prime numbers is called a prime
factorization of the number.
The terms in the product are called prime factors. The same prime
factor may occur more than once.
Using this knowledge we can break scaling coefficients down into
manageable parts that can be manipulated with smaller adder

blocks.

Basic Downscaling

- Downscaling is significantly more tricky that upscaling so to
begin with here’s a simpler method that is essentially a cheat;
- it's pretty efficient for many signals, amongst other things
working for any device where the analogue output is proportional
to it's current state.

Downscaling Clocked Outputs
- considering the process for downscaling a periodic signal suhc
as a clock, operating on the concept that the output is
proportional to time:
- For the case of halving, we can achieve it by doubling the
maximum speed of the clock and then subtracting 50% from that
clock output, as shown below:

fig 1.2.2. Graphical Explanation of the solution [switch sensor to
clock, radius is speed]

- from here on, scaling up along the x-axis by increasing target
speed, things now get a bit complex as it really depends on what
you want the clock speed to do;

- If you want it to speed upwards to 50% and then stop after T
seconds then you can simply set the target time to 2T and then
limit the signal to a maximum of 50%.

- The clock takes a variable input and the comparator is acting as
an analogue ‘comparator’ circuit to trigger a change of that
variable (using the toggle insert vc switch/mute) when the output
is outside the range [0% < z ≤50%].

- Of course, as shown by the dotted line, the nature of
subtraction means that we could well end up with negative value
output, so we use a splitter to discard any value below zero, as
shown below:

fig 1.2.3. Sensor Scaling Circuit [again, sensor to clock, radius
to speed]

- As another example, If you want to create a triangle wave shaped
variation in clock speed, where clock speed T rises to 50% and

then starts to descend back down, you'll have to trigger that
manually [? rly], using something like the following:

fig 1.2.3. Triangle Wave Generator with 50% scaling on the output

Generalisation for any Scaling Factor
- To summarise, downscaling a signal from a [clock] by k:

1. Alter your Max [speed?] to be k times bigger than you require
2. Shift the value down so that the value at [target time] = 0

is 100/k.
3. To achieve this, for example:

k=2, subtract 50
k=3, subtract 66.67
k=4, subtract 75
…,
k=n, subtract 100/n

Split the resultant signal and take the positive component only.

- The above will work for division by any number > 1 and is not
just limited to integers.
- The proof is shown below:

The original line is:

z = 100 - 100 (x/R) = 100(1 – x/R)

The desired line is:

z = 100(1 – x/R)/k

Where k is the scaling coefficient and R is the maximum speed.

- So, scaling the x axis by k on the original equation:

z = 100(1 – x/Rk)

- then subtracting the required value to achieve the transposition;

- This is a little more complex than you might think,
- to subtract a value that is equivalent to division by k at z = 100:

100 - y = 100/k
-y = 100/k – 100
y = 100 – 100/k
y = 100(1-1/k)

So:

z = 100(1 - x/Rk) – y
z = 100(1 - x/Rk) – 100(1-1/k)
z = 100(1 - x/Rk - 1 + 1/k)
z = 100(1/k – x/k)
z = 100(1-x) / k

- So, since this works for any value of k, arithmetically, upscaling is also
possible using this method.

Some More New Gates

- I'm now going to briefly introduce you to another couple of new
logic gates
– this time they don't have any relevance in particular to a new
proof i'm going to introduce or anything
– although all these gates are used in places like computing,
telecommunications, cryptography and a myriad of other places, I
just like weird sequencing tools and sound manglers
– so with out further ado lets look at even/odd parity gates and
majority gates, along with a slightly less cumbersome way of
describing their behaviour than truth tables:

- You're by now very familiar with AND and OR gates:

- AND gates can be considered in this type of representation:

AND(x
1
,x

2
,…,x

n
) = {1 if all arguments are 1

 {0 otherwise

- Likewise, OR gates can be represented as:

OR(x
1
,x

2
,…,x

n
) = {1 if any argument is 1

 {0 otherwise

- So, I present to you the MAJORITY gate:

MAJ(x
1
,x

2
,…,x

n
) = {1 if strictly more arguments are 1 than 0

 {0 otherwise

- And ODD PARITY gate:

ODD(x
1
,x

2
,…,x

n
) = {1 if an odd number of arguments are 1

 {0 otherwise

What is Parity Bit?

- The parity generating technique is one of the most widely used
error detection techniques for the data transmission.
- In digital systems, when binary data is transmitted and
processed, data may be subjected to noise so that such noise can
alter 0s (of data bits) to 1s and 1s to 0s.

- Hence, a Parity Bit is added to the word containing data in
order to make number of 1s either even or odd.
- The message containing the data bits along with parity bit is
transmitted from transmitter to the receiver.

- At the receiving end, the number of 1s in the message is counted
and if it doesn’t match with the transmitted one, it means there
is an error in the data.
- Thus, the Parity Bit it is used to detect errors, during the
transmission of binary data.

Parity Generator and Checker

- A Parity Generator is a combinational logic circuit that
generates the parity bit in the transmitter.
- On the other hand, a circuit that checks the parity in the
receiver is called Parity Checker.
- A combined circuit or device of parity generators and parity
checkers are commonly used in digital systems to detect the single
bit errors in the transmitted data.

Even Parity and Odd Parity

- The sum of the data bits and parity bits can be even or odd.
- In even parity, the added parity bit will make the total number
of 1s an even number,
- whereas in odd parity, the added parity bit will make the total
number of 1s an odd number.
- The basic principle involved in the implementation of parity
circuits is that sum of odd number of 1s is always 1 and sum of
even number of 1s is always 0.
- Such error detecting and correction can be implemented by using
Ex-OR gates (since Ex-OR gate produce zero output when there are
even number of inputs).
- To produce two bits sum, one Ex-OR gate is sufficient whereas
for adding three bits, two Ex-OR gates are required as shown in
below figure.

Parity Generator

- It is combinational circuit that accepts an n-1 bit data and
generates the additional bit that is to be transmitted with the
bit stream.
- This additional or extra bit is called as a Parity Bit.
- In even parity bit scheme, the parity bit is ‘0’ if there are
even number of 1s in the data stream and the parity bit is ‘1’ if
there are odd number of 1s in the data stream.
- In odd parity bit scheme, the parity bit is ‘1’ if there are
even number of 1s in the data stream and the parity bit is ‘0’ if
there are odd number of 1s in the data stream. This will discuss
even parity generators only to avoid duplication of effort.

Even Parity Generator

- Let us assume that a 3-bit message is to be transmitted with an
even parity bit.
- Let the three inputs A, B and C are applied to the circuit and
output bit is the parity bit P.
- The total number of 1s must be even, to generate the even parity
bit P.

- The figure below shows the truth table of even parity generator
in which 1 is placed as parity bit in order to make all 1s as even
when the number of 1s in the truth table is odd.

3-bit message	Even parity bit		
			generator (P)
A	B	C	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0

1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

From the above truth table, the simplified expression of the
parity bit can be written as

- The above expression can be implemented by using just two Ex-OR
gates.
- The logic diagram of even parity generator with two Ex – OR
gates is shown below.

- The three bit message along with the parity generated by this
circuit which is transmitted to the receiving end where parity
checker circuit checks whether any error is present or not.

To generate the even parity bit for a 4-bit data, two Ex-OR gates
are required to add the 4-bits and their sum will be the parity
bit.

Even Parity Checker

- Consider that three input message along with even parity bit is
generated at the transmitting end.
- These 4 bits are applied as input to the parity checker circuit,
which checks the possibility of error on the data. Since the data
is transmitted with even parity,
- four bits received at circuit must have an even number of 1s.
- If any error occurs, the received message consists of odd number
of 1s.
- The output of the parity checker is denoted by PEC (Parity Error
Check).

- The below table shows the truth table for the Even Parity
Checker in which PEC = 1 if the error occurs,
- i.e., the four bits received have odd number of 1s and PEC = 0
if no error occurs,
- i.e., if the 4-bit message has even number of 1s.

4-bit received message	Parity error check			
A	B	C	P	Cp
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

- then deriving the boolean expression from the table:

- The above logic expression for the even parity checker can be
implemented by using just three Ex-OR gates as shown in figure.

- This whole set of truth tables, boolean expressions and logic
circuits also can be generated for odd parity generators and
checkers similarly of course, but i'm going to omit those because
it's not really going to demonstrate anything not already shown
above.

- by now you're probably starting to realise it's pretty much
possible to design a gate with near any possible truth table
imaginable;
- and often they can be built in analogue logic form as well as
digital.

- more obscure gate combinations with far weirder outcome
requirements can be required – let's see the approach to designing
the gate combinations required to achieve them:

- How do we achieve a gate combination that produces the outcome
'At least k'?

- as we know already:
- A n-way majority circuit takes n inputs and returns 1 if, and
only if, at least strictly more of its inputs are 1 than 0.
- Given an n-way majority circuit, we can describe how to build an
At-Least-k circuit that returns 1 if and only if at least k of its
inputs are 1. how?

- considering a 2n-way majority circuit, if:

n-k+1 of the inputs are set to = 1,
k-1 of the inputs are set to = 0, and,
the original n inputs are our signal inputs.

Giving z = MAJ(x
1
, …, x

n
, c

1
, …, c

n
-k+1, b

1
, …, bk-1)

z = MAJ(x1, x
2
, x

3
, c

1
, b

1
, b

2
)

- that's all very well as a leap from question to answer with no
process, but how do we actually get from the question to that
answer?
- and, how do we get to the actual circuit diagram for this?
- lets take, for example n = 3, and k = 3:

1. First of all draw a truth table:
- put all possible combinations of input values based on chosen
number of inputs

x
1

x
2

x
3

c
1

b
1

b
2

z ≥ k [≥ 3] req'd check

0 0 0 1 0 0 0 0 y
0 0 1 1 0 0 0 0 y
0 1 0 1 0 0 0 0 y
1 0 0 1 0 0 0 0 y

0 1 1 1 0 0 1 constant ≤ 1 y

1 1 0 1 0 0 1 constant ≤ 1 y

1 0 1 1 0 0 1 constant ≤ 1 y
1 1 1 1 0 0 1 1 y

- next enter the outcomes

- do the calculated [z ≥ k, i.e. ≥ 3] match the required outcomes?

- every 0 and 1 in the [z ≥ k] and req'd columns match so the

checks are sound.

2. Convert truth table to boolean expression:

- we have an equal number of 0s and 1s in our output column so the
choice of method is moot but generally one would choose the least:

 x
1
!x

2
x
3
c
1
b
1
!b

2
! + x

1
x
2
x
3
!c

1
b
1
!b

2
! + x

1
x
2
!x

3
c
1
b
1
!b

2
! + x

1
x
2
x
3
c
1
b
1
!b

2
! = z

3. Finally convert boolean expression to logic circuit:

- The technique for converting boolean expressions to logic
circuit symbols follows this order:

1. Bracketed quantities
2. NOTs
3. ANDs
4. ORs

- there are no bracketed quantities
- then grouping the NOTs and those that aren't inverted;
- then ANDing together those groups of NOTs and uninverteds
- finally, ORing together the groups of ANDs and ORs:

x2 --- }- x1 --- }- x1 --- }- x1 --- }-
x3 --- }-]- x2 --- }-]- x3 --- }-]- x2 --- }-]-
c1 --- }- c1 --- }- c1 --- }- x3 --- }-
x1 -/- }- x3 -/- }- x2 -/- }- c1 /-/ }-
b1 -/- }-]- b1 -/- }-]- b1 -/- }-]- b1 -/- }-]-
b2 -/- }- b2 -/- }- b2 -/- }- b2 -/- }-

- resulting diagram can then be refined by breaking down into
nands or swapping redundant gates for more efficient ones.

for example;

- since all gates in boolean algebra can be constructed from

NANDs; for example, an XOR from NAND gates:

The boolean expression for output is as below

Let’s simplify it using DeMorgan’s theorem

Any gate can be built from NAND or NOR gates
- As well as making an XOR gate, NAND gates can be combined to
create any type of gate.
- This enables a circuit to be built from just one type of gate.
- For example an AND gate is a NAND gate then a NOT gate (to undo
the inverting function).

- To change the type of gate, such as changing OR to AND, you must
do three things:

1. Invert (NOT) each input.
2. Change the gate type (OR to AND, or AND to OR)
3. Invert (NOT) the output.

- For example an OR gate can be built from NOTed inputs fed into a
NAND (AND + NOT) gate.

- the reason for doing this is to reduce the number of ic's used
in a circuit;
– when only one or two of multiple types of gates are used then 3
or 4 different quad ICs might be reduced to just 2 or 3 quad
NANDs,
- so although more total individual gates now form the circuit the
total cost in ICs is reduced
– saving space, wiring,, increasing efficiency, reducing failure
risk and saving money.

so,

- recreating the diagram long form in NANDs:

NAND NOT NAND NOT NAND NOT NAND NOT OR [2xNOT>NAND] OR
x
2

x
1

x
1

x
1

]

x
3

x
2

x
3

x
2

] 4 input ---- --]

c
1

c
1

c
1

x
3

] |

 2 = z
NAND NAND NAND NAND OR [2xNOT>NAND] input
x
1

x
3

x
2

c
1

] |

b
1

b
1

b
1

b
1

] 4 input ---- --]

b
2

b
2

b
2

b
2

]

= 8 x 3 input NANDs + 17 x 2 input NANDs = 3 x 4023 + 5 x 4011 = 8 ICs

- but any NOTs following eachother – i.e. directly adjacent, can
be removed as a pair:

3 in AND AND AND AND > 4 input OR] > 2 input OR = z
3 in NAND NAND NAND NAND > 4 input OR]

= 2 x 4023 + 2 x 4073 + 1 x 4072 + 1 x 4001 = 6 ICs

- you will likely be left with a simplified condensed circuit
requiring a different number of ICs than the NAND based circuit
that does the desired task.
- note, the circuit may or may not be more efficient as built
purely from NANDs as condensed to specific gate types.
- In this case specific gate types uses 2 ICs less than all NANDs
and so is the superior choice.
- [although when it comes to mass production using entirely NANDs

may still be advantageous due to the savings in bulk buying only
NANDs vs. 3 or 4 different IC types].

- As a result, we have constructed a 6 input majority gate in the
most efficient manner possible from 2 x4073s, 2 x 4023s, a 4072
and a 4001 to give the out put z.
- we have designed a 6 input MAJ from basic AND, NAND and Ors!

- comparing our final logic circuit to the
3 input MAJORITY circuit shown to the right:

- the similarities in structure are quite
apparent which is a big clue that the
initial suggestion that the answer is a 6
input MAJORITY circuit with 3 constants is
in fact correct.

- Likewise to design an 'Exactly k' circuit, we need a circuit
that outputs 1 if and only if exactly k of its inputs are 1.

- consider:
- If k = n, an n-way AND gate is used.
- Otherwise, building up an 'At-least-k' circuit as before, and a
modification of it, an At-least-k+1 circuit, using the same
techniques as in the previous example.
- It has exactly k inputs that are 1 if the first circuit outputs
1, but the second one outputs 0.

z = AND(At-least-k, At-least-k+1)
 = AND(MAJ(x1, x2, x3, c1, b1, b2), (MAJ(x1, x2, x3, c1, b1, b2)+1))

- The full truth table and circuit diagram for this would be
somewhat enormous so I wont draw out the full calculation as a
proof.
– if you really need to see it, have a go!

- With this kind of approach you can solve near any sequencing,
drum pattern, event triggering, melody switching or whatever
patch-programming issue you face purely by analysing it logically
and using some basic utilitarian tools.

Analogue Sort

- There's endless uses for sorting values as with any other logic
and therefore likewise with analogue logic the equivalent is even
more true as ever
- not only is sorting values useful but the resulting cv shaping
and audio wave form outputs that can be derived etc. are great.

- the most basic sort function is to order the inputs by value
based on breaking the problem down to smaller and smaller
comparisons - otherwise known as 'divide and conquer' sorting.
- As has been shown, max() and min() enable finding the highest
and lowest values from a set of numbers this is also the first
step in sorting.

Finding the median Value:
- The method of finding the middle of three value involves the
following process:
 1. Find all pairs of signals
 2. Get the min() value for each pair.
 3. Take the max() of these min()s.

- The concept here is that if you take all possible pairs, you are
guaranteed to have one pair that consists of the highest value and
the second highest value.
- This particular pair will return a min() value equal to the
second largest value of the three and none of the other min()s can
return a larger value.

- First, identifying the pairs of signals, and their minmum values
to give the three intermediary values:
y
1
 = min (x

1
, x

2
)

y
2
 = min (x

1
, x

3
)

y
3
 = min (x

2
, x

3
)

Then finding the maximums of those values:
z = max (y

1
, y

2
, y

3
)

- Two relevant points of note, although I've stated this is the
middle value of three, it is in fact the method for finding the
second largest of a set of values
- i.e. expanding the number of inputs does not continue to give
the median with this method but the second largest.

- also, note that when input values are duplicates, the sort does
not actually find the second largest value,
- it actually sorts the values in descending magnitude and the
output is the value of the second index of that ordered list.
- i.e. generally the output is the actual second largest so the
sorting will be correct, but for a sort, "second largest value" is
slightly misleading.

Finding the Second Smallest Value:
- A very similar way can be used to find the second smallest value
by replacing the max() function for a min() and the min()s for
max()s.
- Although this is redundant with three inputs middle value being
middle value, this is relevant when using more inputs:

- This 'merge sort' method works for any number of inputs, the
number of pairs just increases - instead of only 3 pairs to deal
with for 3 inputs, with four inputs 6 pairs are needed:

(x
1
, x

2
), (x

1
, x

3
), (x

1
, x

4
), (x

2
, x

3
), (x

2
, x

4
), (x

3
, x

4
)

- The formula for the number of pairs, which allows us to
calculate the number of gates needed, is as follows:

p = [n (n-1)] / 2

where
p is the number of pairs required
n is the number of inputs

- Since this is a 2nd order polynomial (related to the square of
n) the sort method becomes exponentially more complex as the
number of inputs increases.

Sorting into ordered lists:

- Since min, max, second smallest and second largest value can be
found, a circuit can be made to take 4 analogue input values and
output the same four values in descending order (or therefore

technically any order you patch them).

Finding the nth Largest / Smallest Value:
- it's also possible to select the value that is nth largest /
smallest value in a set;
- as with finding the 2nd largest value, values were grouped into
pairs, for 3rd largest they are grouped into triplets and for the
nth largest they are grouped into groups of size n.

- Although the complexity increases even more steeply with input
and desired output out complexity it allows the generation of a
fully ordered list of values or selecting a specific value from
that list.
- This solves the earlier problem of finding the true Median value
from a set.

- There are also methods of sorting based on comparison sort
algorithms, which can also be achieved with min and max functions.

- Basic forms of comparison sort exist, such as Bubble sort,
sometimes referred to as 'sinking sort', that repeatedly steps
through a list comparing adjacent elements and swaps them if they
are in the wrong order, passes through the list is repeating until
the list is sorted.

- these comparison sorts are not suitable for finding the value of
a specific index in the list, without actually ordering the entire
thing, such as the Median, but may be simpler than the number of
gates required for high input numbers.

Example application of analogue logic circuitry:

- 'Limiting'; using simple waveform manipulation circuitry to
convert a triangle wave to a sine wave using devices discussed in
this document:

centering ------>
offset [DC]

 mixer -> limited
High Offset [DC] --> wave out [AC]

wave AND ------------>
in [AC] -->

OR ------>
Low -->
offset [DC]

Signal sources

- In this case, there's an AC input tri wave and some DC offsets
as the signal sources.
- The tri wave has the following properties:

Period: 4s (note, this is arbitrary)
Shape: Triangle

as per the graph below:

4.2. Signal Limiting

- As discussed above, some of the simplest operations we can do on
analogue signals is min() and max(), using ANDs and ORs.
- We can use this to achieve some boundary limiting on the signal,
preventing the signal going above 80% or below 20%.

- So taking the input tri wave and using an OR gate with a DC
offset giving a constant 20% will give us a max function, which
leads to a lower boundary.
- To clarify: if the wave in is greater than 20, the output of the
OR gate is equal to the wave, but if the wave drops below 20, then
the OR gate will output 20.

- After this we do the same thing with an AND gate to do a min()
with an 80% DC offset, to give an upper limit, and the resulting
output of the AND gate is shown below (with the original wave in
dotted lines).

- You can see that the timer's output is ignored when it exceeds
the minimum and maximum bounds that we have set for it:

- Conceptually it is a little unintuitive that we use a min()
function to create a maximum value, and vice versa, but that's how
it works I assure you.

Removing the DC Offset
- Sometimes, especially with waveforms, it's useful to have them
centred around 0, and to do this we need to shift the whole wave
down by 50 (the point at which it is currently centred - its
average value).
- This is a simple subtraction operation using a summing mixer and
a SC offset providing 50%, results are as shown:

Extending the concept

We can further process this waveform by integrating it - actually
turning out to be a rough approximation of a sine wave, as shown
below:

Note: This is only an approximation of a sine wave.

Ive thrown in the math below for those interested but its not
particularly significant in any special way.

constant c
3
 ---->

 c
2
 -------> sum ---> trapezoid

 max() ----------->
Tri ---->

 min() ->
c
1

---->

If c
1
 is 20, c

2
 is 80 and c

3
 is 50

At any given time, the voltage of the limited waveform output an
be calculated by the equation:

V = Max(Min(Vtri, c
1
), c

2
) + c

3

finally integrating the trapezoid waveform will give a very good
approximation of a sin wave.

f(x) = (2/π) sin-1[sin (π x)]

Glossary And Reference

here is a definitive list of logic operations and their strict
definitions – they're presented in this form so that unambiguous
outcomes for any truth table can be calculated:

- NOT(x
1
) = {1 if argument is 0

 {0 otherwise

- AND(x
1
,x

2
,…,x

n
) = {1 if all arguments are 1

 {0 otherwise

- OR(x
1
,x

2
,…,x

n
) = {1 if any argument is 1

 {0 otherwise

- XOR(x
1
,x

2
,…,x

n
) = {1 if either one, but not both nor none of

 arguments are 1
 {0 otherwise

- MAJ(x
1
,x

2
,…,x

n
) = {1 if strictly more arguments are 1 than 0

 {0 otherwise

- ODD(x
1
,x

2
,…,x

n
) = {1 if an odd number of arguments are 1

 {0 otherwise

- IMPLY(x
1
,x

2
,…,x

n
) = {1 if 1 unless first argument is 1 and

 second argument is 0
 {0 otherwise

- CONV(x
1
,x

2
,…,x

n
) = {1 unless only second argument is 1

 {0 otherwise

 [inverted operation equivalents like NAND, NOR and XNOR omitted]

- more...?

- ...

