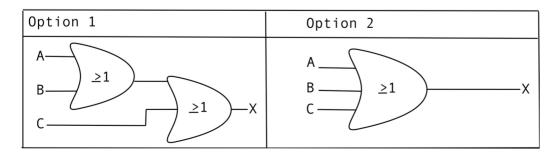


LjunggrenAudio RYO NOR/ORDiscrete Resistor-Transistor Boolean Logic in 4hp

Quickstart — what is the NOR/OR and how do I get going?

The circuitries of the RYO logic gate modules are directly modelled after the very earliest form of digital logic gate designs using resistor-transistor-logic (RTL) pioneered in the 1950s and used in computing equipment throughout the 50s and 60s. For instance, the Apollo Guidance Computer used the same type of 3-input NOR gate design now found in the RYO NOR/OR module, although in vastly greater numbers.


RYO Discrete TRL Boolean Logics NOR/OR

- Gate one input 1
- **2** Gate one input 2
- **3** Gate one input 3
- 4 Gate one NOR output
- **5** Gate one OR output (normalled to Gate two input 1)
- **6** Gate two input 1
- **?** Gate two input 2
- ❸ Gate two NOR output
- **9** Gate two OR output

[Try dif input amplitudes, waveforms and frequency rates including audio into inputs!] Width: 4 hp

		OR	NOR
		X = A+B	$X = \overline{A+B}$
Α	В	A≥1—X	A≥1)•—X
0 0 1 1	0 1 0 1	1 0 0 0	1 1 1 0
	0 0 1	0 0 0 1 1 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Name				OR	NOR
Alg. Expr.				A+B+C=X	A+B+C =X
Symbol	Α	В	С	A— C—≥1—X	A ≥ 1
Truth Table	0 0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1	0 1 1 1 1 1	1 0 0 0 0 0 0
	⊥	Ι Τ	I	1	U

Installation

To begin installation, please make sure that:

- you have a standard pinout eurorack bus board
- you have +12V and -12V power rails on that bus board [no +5V supply is required]
- the power rails are not overloaded

!!!Before installing this module disconnect the power from your system!!!

- Double check the polarity of the ribbon cable - The red stripe should be aligned with the -12V rail, on both the module and on the bus board

[we use shrouded headers but it's still possible a cable has been assembled with the stripe on the wrong side of the shroud so always double check!].

Also make sure when using busboards without shrouded headers that the pins aren't transposed a row vertically or horizontally — all pins should insert into holes on the cable.

Although we use both PTC fuses and schottky diodes to provide reverse polarity and excess current protection, we do not take any responsibility for damages caused by wrong power supply connection!

After you have connected everything, double checked it and ensured your case is closed such that no power lines can be touched by your hand or any stray cables drop into holes, turn on your system and test the module

The NOR/OR is a relatively low skill-level project, it is a low part count, twin-PCB build that only requires fairly basic experience in PCB soldering and module assembly:

The RTL circuit design gives the modules some interesting quirks thanks to the transistors threshold windows when playing around with different amplitudes, waveforms and frequency rates of the incoming signals, making it fun and useful to explore beyond typical logic gating duties, for example as an audio waveshaper/distortion.

The NOR/OR module can be patched as:

- two NOT gates,
- one NOT gate and one 2- or 3-input NOR/OR gate,
- one 2-input NOR/OR gate and one 2- or 3-input NOR/OR gate
- or one 4-input NOR/OR gate.

Gate one has three inputs, the second has two. The OR out from gate one is being normalized to input 1 on gate two for efficient cable and timesaving patching.

Dimensions

Height: **3U** (128.5mm) Width: **4HP** (20mm)

45mm (with power cable attached) Depth:

Weight: 35g (approx w/cable)

Current consumption

+12V rail max 28mA (@10V input signal)*

-12V rail

+5V rail no +5V supply required

*(14mA @ 5V input signal)

Basic specifications total frequency controllable range dc to 50kHz

max input/output audio signal 20Vpp CV input range n/a

Max gain n/a

Nominal impedances

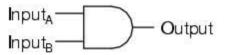
Audio signal input: 100k ohm Audio Signal output: 1k ohm CV input: n/a

Patch ideas:

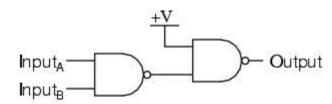
below i've included some inspiring words of patches to try with the module; and, as ever, experiment — RYO modules are designed with all necessary protection and fail-safes so you can just start plugging in patch cables and see what happens!

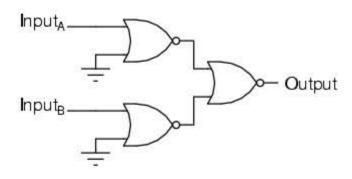
Audio rate signals:

try audio rate signals at different amplitudes and frequencies and pulsewidths/shapes for a variety of new waveforms.

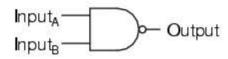

Combine with other logic gates:

build more complex logic gates, counters/multiplexer or even analog computers using multiple logic modules (See the upcoming section on the RYO website currently under construction for further information and resources)

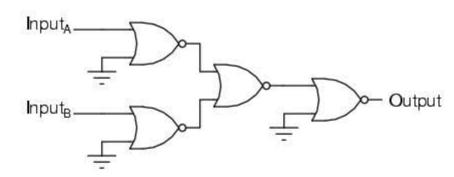

Window Comparator:

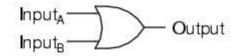

using an OR gate, you can effectively perform window comparator operations using 2 bipolar signals where the negative portions of either of the inputs are swapped with the positive portions of the other input.

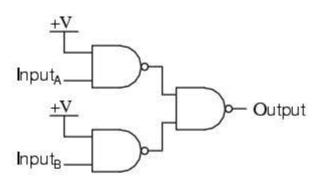
2-input AND gate

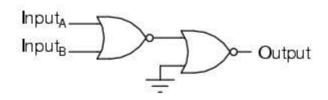


A	В	Output
0	0	0
0	1	0
1	0	0
1	1	1

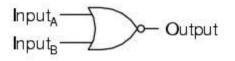



2-input NAND gate

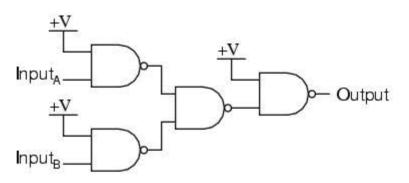

Α	В	Output
0	0	1
0	1	1
1	0	1
1	1	0

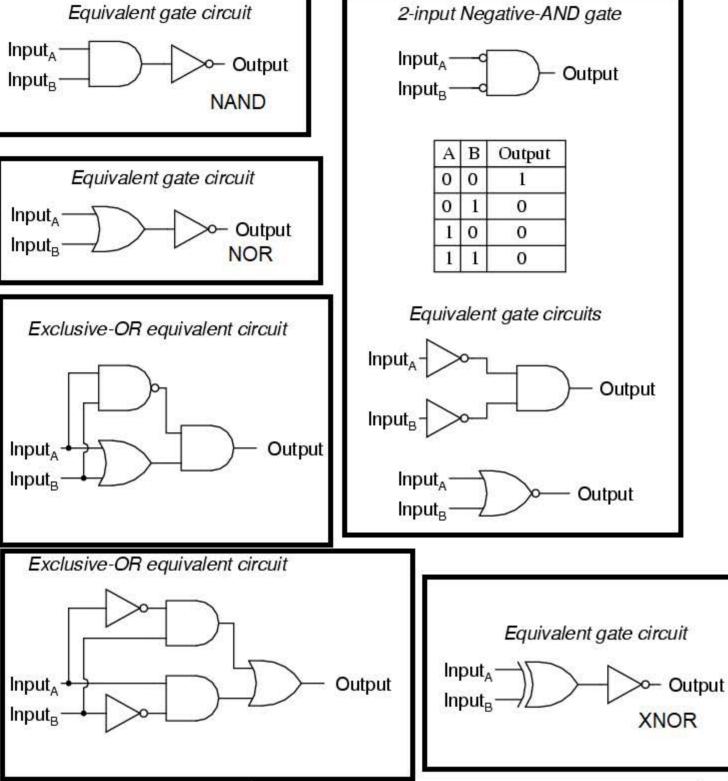


2-input OR gate

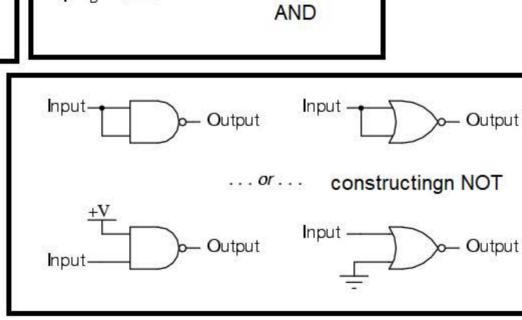


A	В	Output
0	0	0
0	1	1
1	0	1
1	1	1





2-input NOR gate


	A	В	Output
1	0	0	1
Ī	0	1	0
Ī	1	0	0
	1	1	0

nput

Input-

2-input Negative-OR gate

Output

0

Equivalent gate circuits

Equivalent circuit

Input_B

Input_A-

Input_B-

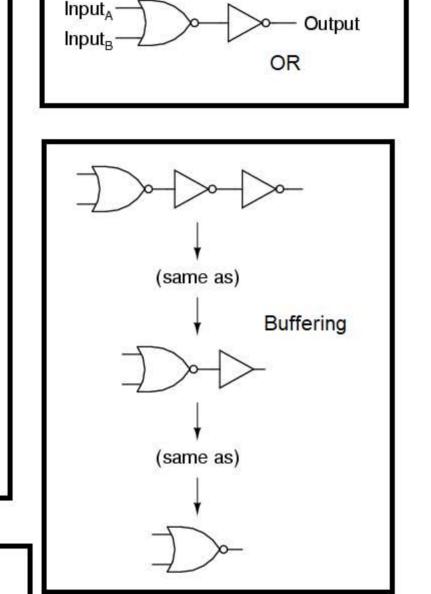
Input_B

Input_A

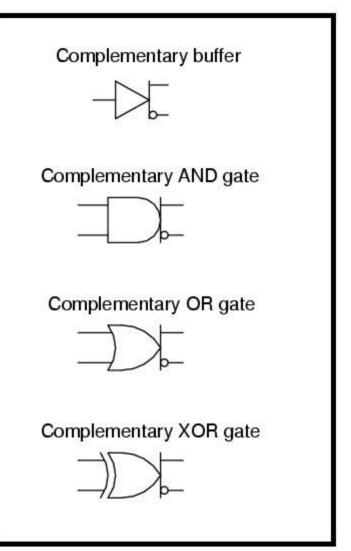
Input_B

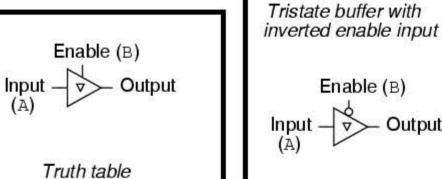
Output

constructing Buffer


1 0

Output


Output


Output

Output

Equivalent circuit

AB

Output

0

0 0 High-Z

1 0 High-Z

Truth table

A	В	Output
0	0	0
0	1	High-Z
1	0	1
1	1	High-Z